首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The human X-linked recessive disorder of copper metabolism, Menkes disease, is caused by a defect in the MNK ( ATP7A ) gene which encodes a transmembrane copper-transporting P-type ATPase (MNK). MNK is an important component of the mammalian copper transport pathway, and previous studies in cultured cells have localized MNK to the final compartment of the Golgi apparatus, the trans -Golgi network (TGN). At this location, MNK is predicted to supply copper to copper-dependent enzymes as they migrate through the secretory pathway. However, under conditions of elevated extracellular copper, the MNK protein undergoes a rapid relocalization to the plasma membrane where it functions in the efflux of copper from cells. In this study, three di-leucine motifs and a cluster of four acidic amino acids within the C-terminal region of MNK were investigated as candidate signals necessary for steady-state TGN localization. In vitro mutagenesis of the human MNK cDNA and immunofluorescence detection of mutant forms of MNK expressed in cultured cells demonstrated that the di-leucine, L1487L1488, was essential for localization of MNK within the TGN, but not for copper efflux. We suggest that this di-leucine motif is a putative endocytic targeting motif necessary for the retrieval of MNK from the plasma membrane to the TGN. Our data, along with the recent demonstration that the third transmembrane region of MNK functions as a TGN targeting signal, suggests that MNK localization to the TGN may be a two-step process involving TGN retention via the transmembrane region, and recycling to this compartment from the plasma membrane via the L1487L1488 motif.  相似文献   

6.
At least three regions of the simian virus 40 small-t antigen (small-t) contribute to the protein's ability to enhance cellular transformation. As we showed previously for rat F111 cells, one region includes sequences from residues 97 to 103 that are involved in the binding and inhibition of protein phosphatase 2A. In the present study, the role of the protein phosphatase 2A binding region was confirmed in two additional small-t-dependent transformation systems. Second, small-t was found to provide a function previously identified as a large-T transformation domain. Mutations in residues 19 to 28 of large-T affected its transforming ability, but these mutations were complemented by a wild-type small-t. A third region of small-t was also required for efficient transformation. This region, the 42-47 region, is shared by large-T and small-t and contains a conserved HPDKGG hexapeptide. The 42-47 region function could be provided by either small-t or large-T in small-t-dependent systems. Mutations in the 42-47 region reduced the ability of small-t to transactivate the cyclin A promoter, of interest because small-t increased endogenous cyclin A mRNA levels in both human and monkey cells, as well as transactivating the promoter in transient assays.  相似文献   

7.
8.
An antipeptide antibody was raised against a 14-mer synthetic peptide (CDFRANPNEPA KMN) corresponding to the amino acid sequence from 491 to 504 of human cytochrome P-450 (CYP)1B1. Rabbit-derived antisera demonstrated the ability to induce moderately high antibody titers (>1:10(5)) as judged by enzyme-linked immunosorbent assay. In Western blot analysis, the purified antibody recognized a single protein band (estimated as 56 kDa) in microsomes prepared from human and rodent tissues. No significant cross-reactivity to either human CYP1A1 or human CYP1A2 protein was detected. Titration studies using recombinant human CYP1B1 and an enhanced chemiluminescence-based detection method demonstrated a minimal detection sensitivity for this antiserum at about 0.34 ng/band in 8 x 7-cm minigels. The immunoprecipitation and immunoinhibition results indicate that this antisera recognizes the nondenatured human CYP1B1 protein but does not inhibit its enzyme activity. Using this antibody, CYP1B1 protein was detected in nine different human tissues and in cultured cells induced by various chemicals. This highly specific, highly sensitive antibody provides an important tool to study tissue distribution and cellular expression levels of CYP1B1, with negligible cross-reactivity from the other members of the CYP1 family.  相似文献   

9.
10.
STUDY OBJECTIVES: To examine the incidence and consequences of atrial arrhythmias in surgical ICU patients following major noncardiac, nonthoracic surgery. DESIGN: Prospective observational study. SETTING: University hospital surgical ICU. PATIENTS: Four hundred sixty-two consecutive patients after noncardiothoracic surgery. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: Patients were assigned to one of three groups: group 1-new-onset atrial arrhythmias (n=47); group 2-history of atrial arrhythmias (n=58); and group 3-no atrial arrhythmias (n=357). New arrhythmias occurred in 10.2% of patients. Most began within the first 2 postoperative days. These patients had a higher mortality rate (23.4%), longer ICU stay (8.5+/-17.4 [SD] days), and extended hospital stay (23.3+/-23.6 days) than patients without atrial arrhythmias (mortality, 4.3%; ICU stay, 2.0+/-4.5 days; hospital stay; 13.3+/-17.7 days; p<0.02). Thirteen percent of patients had a history of atrial arrhythmias. They had a higher mortality rate (8.6%) and longer ICU stays (2.9+/-4.9 days; p<0.02) than patients without arrhythmias. Most deaths in the two arrhythmia groups were not due to cardiac problems, but to sepsis or cancer. CONCLUSIONS: Patients admitted to a surgical ICU after noncardiothoracic surgery with a history of or who developed new atrial arrhythmias had greater mortality and longer ICU stays than patients without arrhythmias. The incidence of new-onset arrhythmias was lower than reported after cardiac and thoracic surgery, but higher than in the general population. Atrial arrhythmias were not the cause of death and appear to be markers of increased mortality and morbidity.  相似文献   

11.
Rat brain phospholipase D1 (rPLD1) belongs to a superfamily defined by the highly conserved catalytic motif (H(X)K(X)4D, denoted HKD. RPLD1 contains two HKD domains, located in the N- and C-terminal regions. Deletion mutants of rPLD1 that contained only an N- or C-terminal HKD domain exhibited no catalytic activity when expressed in COS 7 cells. However, when N-terminal fragments containing one of the HKD domains were cotransfected with a C-terminal fragment containing the other HKD domain, PLD activity was restored. Furthermore, immunoprecipitation assays showed that the N- and C-terminal halves of rPLD1 were physically associated when expressed in COS 7 cells. In addition, deletion of 168 amino acids from the N terminus of rPLD1 significantly enhanced basal PLD activity while inhibiting the response to phorbol ester. Likewise, the coexpression of this truncated N-terminal half with the C-terminal half resulted in increased PLD activity. In summary, this study provides direct evidence that the enzymatic activity of rPLD1 requires the presence of the HKD domains in both the N- and C-terminal regions of the molecule. More importantly, the two halves of rPLD1 can associate, and this may be essential to bring the two HKD domains together to form an active catalytic center. These findings provide new insights into the catalytic mechanism of enzymes of the PLD superfamily.  相似文献   

12.
13.
Presenilin 2 (PS2) is a gene responsible for the early-onset familial Alzheimer's disease (AD). PS2 mutations are considered to be closely related to the pathogenesis of AD. We screened for proteins that interact with PS2 to understand its pathological and physiological functions. Using the PS2 loop domain as the bait, the yeast two-hybrid system was used for screening, and mu-calpain was identified as a PS2 binding protein. In COS-1 cells, the interaction of PS2 with mu-calpain was confirmed by immunoprecipitation. These results suggested that PS2 and mu-calpain interact with each other, and might regulate each other's functions.  相似文献   

14.
ErbB3 is unique among other members of the receptor tyrosine kinase family of growth factor receptors in that its kinase domain is enzymatically impaired. This renders it incapable of transducing a signal in response to ligand binding. However, in conjunction with ErbB2, ErbB3 is a potent mediator of signaling by the growth factor heregulin. Heregulin binding to ErbB3 induces formation of a heterodimeric complex with ErbB2, and this results in transactivation of the ErbB2 kinase. Although interaction between the extracellular domains of these receptors is an essential part of this process, it was not clear whether interaction between the cytoplasmic domains is also necessary for transactivation. By examining the abilities of a series of cytoplasmic domain mutants of ErbB3 to activate ErbB2, we have found a discrete sequence of three amino acid residues (LVI), located at the carboxyl-terminal end of the impaired ErbB3 kinase region, that is obligatory for transactivation. We conclude that formation of a functional ErbB2-ErbB3 signaling complex requires the presence of a specific structural feature within the ErbB3 cytoplasmic domain and suggest that ErbB2 transactivation results from a physical interaction between the cytoplasmic domains of these receptors.  相似文献   

15.
A novel cyclin gene was discovered by searching an expressed sequence tag database with a cyclin box profile. The human cyclin E2 gene encodes a 404-amino-acid protein that is most closely related to cyclin E. Cyclin E2 associates with Cdk2 in a functional kinase complex that is inhibited by both p27(Kip1) and p21(Cip1). The catalytic activity associated with cyclin E2 complexes is cell cycle regulated and peaks at the G1/S transition. Overexpression of cyclin E2 in mammalian cells accelerates G1, demonstrating that cyclin E2 may be rate limiting for G1 progression. Unlike cyclin E1, which is expressed in most proliferating normal and tumor cells, cyclin E2 levels were low to undetectable in nontransformed cells and increased significantly in tumor-derived cells. The discovery of a novel second cyclin E family member suggests that multiple unique cyclin E-CDK complexes regulate cell cycle progression.  相似文献   

16.
Type I Helicobacter pylori strains frequently recognize the Lewisb (Leb) blood group antigen. This binding property and expression of the Leb oligosaccharide were required for adherence to fixed normal or pathologic gastric tissue. In contrast, both type I and type II strains adhered to cultured cells in the absence of the Leb epitope. For the gastric cell line AGS, adherence was significantly higher when viable type I strains were allowed to interact with viable AGS cells compared with fixed cells. The observation that chloramphenicol and cycloheximide, inhibitors of bacterial and eukaryotic protein synthesis, respectively, significantly reduced adherence of type I but not type II isolates suggests that in type I strains, adherence depends on the up-regulation of one or more host cell receptors triggered by the bacterium.  相似文献   

17.
We have explored the molecular basis of the cAMP-induced stabilization of lactate dehydrogenase A (LDH-A) mRNA and identified four cytoplasmic proteins of 96, 67, 52, and 50 kDa that specifically bind to a 30-nucleotide uridine-rich sequence in the LDH 3'-untranslated region with a predicted stem-loop structure. Mutational analysis revealed that specific protein binding is dependent upon an intact primary nucleotide sequence in the loop as well as integrity of the adjoining double-stranded stem structure, thus indicating a high degree of primary and secondary structure specificity. The critical stem-loop region is located between nucleotides 1473 and 1502 relative to the mRNA cap site and contains a previously identified cAMP-stabilizing region (CSR) required for LDH-A mRNA stability regulation by the protein kinase A pathway. The 3'-untranslated region binding activity of the proteins is up-regulated after protein kinase A activation, whereas protein dephosphorylation is associated with a loss of binding activity. These results imply a cause and effect relationship between LDH-A mRNA stabilization and CSR-phosphoprotein binding activity. We propose that the U-rich CSR is a recognition signal for CSR-binding proteins and for an mRNA processing pathway that specifically stabilizes LDH mRNA in response to activation of the protein kinase A signal transduction pathway.  相似文献   

18.
Dicot plant embryos undergo a transition from radial to bilateral symmetry. In Arabidopsis, this change reflects patterning within the apical region, resulting in the formation of the cotyledon and shoot meristem primordia. Mutations in the GURKE gene give seedlings with highly reduced or no cotyledons. Both strong and weak gurke alleles confer this phenotypic variability although strong alleles often eliminate the entire apex and sometimes also part of the hypocotyl. The root and the root meristem as well as the radial pattern of concentric tissue layers are essentially normal. The mutant seedling phenotype can be traced back to the triangular/early-heart stage of embryogenesis when abnormal cell divisions occur within the apical region such that no or only rudimentary cotyledon primordia are established. The postembryonic development of gurke seedlings was examined in culture. In weak alleles, apical growth gave rise to abnormal leaves and stem-like structures and, eventually, abnormal flowers. In strong alleles, the apical region often failed to grow but occasionally produced fused leaf-like structures with no dorso-ventral polarity and a totally unorganized vascular system while no stems developed. The observations suggest that the GURKE gene is involved primarily in the organization of the apical region in the embryo and may also play a role during postembryonic development.  相似文献   

19.
Adenovirus E1A proteins immortalize primary animal cells and cooperate with several other oncogenes in oncogenic transformation. These activities are primarily determined by the N-terminal half (exon 1) of E1A. Although the C-terminal half (exon 2) is also essential for some of these activities, it is dispensable for cooperative transformation with the activated T24 ras oncogene. Exon 2 negatively modulates in vitro cooperative transformation with T24 ras as well as the tumorigenic and metastatic potentials of transformed cells. A short C-terminal sequence of E1A governs the oncogenesis-restraining activity of exon 2. This region of E1A binds with a cellular phosphoprotein, CtBP, through a 5-amino acid motif, PLDLS, conserved among the E1A proteins of human adenoviruses. To understand the mechanism by which interaction between E1A and CtBP results in tumorigenesis-restraining activity, we searched for cellular proteins that complex with CtBP. Here, we report the cloning and characterization of a 125-kDa protein, CtIP, that binds with CtBP through the PLDLS motif. E1A exon 2 peptides that contain the PLDLS motif disrupt the CtBP-CtIP complex. Our results suggest that the tumorigenesis-restraining activity of E1A exon 2 may be related to the disruption of the CtBP-CtIP complex through the PLDLS motif.  相似文献   

20.
Brain-retrocerebral complexes of female crickets, Gryllus bimaculatus and Acheta domesticus, treated with antibody to allatostatin-1 from a cockroach, Diploptera punctata, show extensive immunoreactivity. The results suggest that allostatins or allatostatin-like molecules are produced in neurosecretory cells of the brain and are delivered to the corpora allata through nervous connections and/or via haemolymph. Radiochemical measurements of juvenile hormone III biosynthesis by isolated corpora cardiaca-corpora allata complexes from adult G. bimaculatus have been used to demonstrate an in vitro sensitivity of these glands to allatostatin-1 from D. punctata. Allatostatin-1 is a relatively potent inhibitor of juvenile hormone III biosynthesis in corpora allata of both young adult females and males. In glands taken from 3-day virgin females, 50% inhibition of hormone biosynthesis is reached at ca. 3 nmol.l-1 allatostatin-1. The inhibitory action of allatostatin-1 is rapid, dose-dependent and reversible. Addition of 200 mumol.l-1 farnesol to the incubation medium prevents inhibition of juvenile hormone III biosynthesis by allatostatin-1. Juvenile hormone III biosynthesis by isolated corpora allata of 3-day female house crickets, A. domesticus, is also susceptible to inhibition by 1 mumol.l-1 allatostatin-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号