首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides an implicit central compact scheme for the numerical solution of incompressible Navier–Stokes equations. The solution procedure is based on the artificial compressibility method that transforms the governing equations into a hyperbolic-parabolic form. A fourth-order central compact scheme with a sixth-order numerical filtering is used for the discretization of convective terms and fourth-order central compact scheme for the viscous terms. Dual-time stepping approach is applied to time discretization with backward Euler difference scheme to the pseudo-time derivative, and three point second-order backward difference scheme to the physical time derivative. An approximate factorization-based alternating direction implicit scheme is used to solve the resulting block tridiagonal system of equations. The accuracy and efficiency of the proposed numerical method is verified by simulating several two-dimensional steady and unsteady benchmark problems.  相似文献   

2.
The computation of incompressible three-dimensional viscous flow is discussed. A new physically consistent method is presented for the reconstruction for velocity fluxes which arise from the mass and momentum balance discrete equations. This closure method for fluxes allows the use of a cell-centered grid in which velocity and pressure unknowns share the same location, while circumventing the occurrence of spurious pressure modes. The method is validated on several benchmark problems which include steady laminar flow predictions on a two-dimensional cartesian (lid driven 2D cavity) or curvilinear grid (circular cylinder problem at Re = 40), unsteady three-dimensional laminar flow predictions on a cartesian grid (parallelopipedic lid driven cavity) and unsteady two-dimensional turbulent flow predictions on a curvilinear grid (vortex shedding past a square cylinder at Re = 22,000).  相似文献   

3.
This paper presents a computational scheme suitable for analyzing viscous incompressible flows in generalized curvilinear coordinate system. The scheme is based on finite volume algorithm with an overlapping staggered grid. The pseudo-diffusive terms arising from the coordinate transformation are treated as source terms. The system of nonlinear algebraic equations is solved by a semi-implicit procedure based upon line-relaxation and a generalization of Patankar's pressure correction algorithm. Examples of the application of the algorithm to flow in convergent channels, developing flow in a U-bend, and flow past backward facing step, are given. In addition, the case of flow past backward facing step is analyzed in detail, and the computed flowfields are found to be in close agreement with previous experimental and numerical results for expansion ratio (defined as the ratio of step height to channel height) of 0.5. The results are summarized in the form of a correlation relating the primary separation length, Reynolds number and expansion ratio.  相似文献   

4.
This paper presents two efficient methods for spatial flows calculations. In order to simulate of incompressible viscous flows, a second-order accurate scheme with an incomplete LU decomposed implicit operator is developed. The scheme is based on the method of artificial compressibility and Roe flux-difference splitting technique for the convective terms. The numerical algorithm can be used to compute both steady-state and time-dependent flow problems. The second method is developed for modeling of stationary compressible inviscid flows. This numerical algorithm is based on a simple flux-difference splitting into physical processes method and combines a multi level grid technology with a convergence acceleration procedure for internal iterations. The capabilities of the methods are illustrated by computations of steady-state flow in a rotary pump, unsteady flow over a circular cylinder and stationary subsonic flow over an ellipsoid.  相似文献   

5.
The objective of the present work is to extend our FDS-based third-order upwind compact schemes by Shah et al. (2009) [8] to numerical solutions of the unsteady incompressible Navier–Stokes equations in curvilinear coordinates, which will save much computing time and memory allocation by clustering grids in regions of high velocity gradients. The dual-time stepping approach is used for obtaining a divergence-free flow field at each physical time step. We have focused on addressing the crucial issue of implementing upwind compact schemes for the convective terms and a central compact scheme for the viscous terms on curvilinear structured grids. The method is evaluated in solving several two-dimensional unsteady benchmark flow problems.  相似文献   

6.
This paper deals with the numerical solution of Newtonian and non-Newtonian flows with biomedical applications. The flows are supposed to be laminar, viscous, incompressible and steady or unsteady with prescribed pressure variation at the outlet. The model used for non-Newtonian fluids is a variant of power law. Governing equations in this model are incompressible Navier–Stokes equations. For numerical solution we use artificial compressibility method with three stage Runge–Kutta method and finite volume method in cell centered formulation for discretization of space derivatives. The following cases of flows are solved: steady Newtonian and non-Newtonian flow through a bypass connected to main channel in 2D, steady Newtonian flow in angular bypass in 3D and unsteady non-Newtonian flow through bypass in 2D. Some 2D and 3D results that could have application in the area of biomedicine are presented.  相似文献   

7.
We propose a novel, time-accurate approach for solving the unsteady, three-dimensional, incompressible Navier-Stokes equations on non-staggered grids. The approach modifies the standard, dual-time stepping artificial-compressibility (AC) iteration scheme by incorporating ideas from pressure-based, fractional-step (FS) formulations. The resulting hybrid fractional-step/artificial-compressibility (FSAC) method is second-order accurate and advances the Navier-Stokes equations in time via a two-step procedure. In the first step, which is identical to the convection-diffusion step in pressure-based FS methods, a preliminary velocity field is calculated, which is not divergence-free. In the second step, however, instead of deriving a pressure-Poisson equation as in FS methods, the projection of the velocity field into the solenoidal vector space is implemented using a dual-time stepping AC formulation. Unlike the standard dual-time stepping AC formulations, where the dual-time iterations are carried out with the entire non-linear system, in the FSAC scheme the convective and viscous terms are computed only once or twice per physical time step. Numerical experiments show that the proposed method provides second-order accurate solutions and requires considerably less CPU time than the widely used standard AC formulation. To demonstrate its ability to compute complicate problems, the method is also applied to a flow past cylinder with endplates.  相似文献   

8.
H.S. Tang   《Computers & Fluids》2006,35(10):1372-1383
Grid interface treatment is a crucial issue in solving unsteady, three-dimensional, incompressible Navier–Stokes equations by domain decomposition methods. Recently, a mass flux based interpolation (MFBI) interface algorithm was proposed for Chimera grids [Tang HS, Jones SC, Sotiropoulos F. An overset grid method for 3D unsteady incompressible flows. J Comput Phys, 2003;191:567–600] and it has been successfully applied to a variety of flows. MFBI determines velocity and pressure at grid interfaces by mass conservation and interpolation, and it is easy to implement. Compared with the commonly used standard interpolation, which directly interpolates velocity as well as pressure, the proposed interface algorithm gives fewer solution oscillations and faster convergence rates. This paper makes a study on MFBI. Starting with discussions about grid connectivity, it is shown that MFBI is second-order accurate for mass flux across grid interface. It is also derived that the scheme provides second-order accuracy for momentum flux. In addition, another version of MFBI is presented. At last, numerical examples are presented to demonstrate that MFBI honors mass flux balance at grid interfaces and it leads to second-order accurate solutions.  相似文献   

9.
In this paper a novel method for simulating unsteady incompressible viscous flow over a moving boundary is described. The numerical model is based on a 2D Navier–Stokes incompressible flow in artificial compressibility formulation with Arbitrary Lagrangian Eulerian approach for moving grid and dual time stepping approach for time accurate discretization. A higher order unstructured finite volume scheme, based on a Harten Lax and van Leer with Contact (HLLC) type Riemann solver for convective fluxes, developed for steady incompressible flow in artificial compressibility formulation by Mandal and Iyer (AIAA paper 2009-3541), is extended to solve unsteady flows over moving boundary. Viscous fluxes are discretized in a central differencing manner based on Coirier’s diamond path. An algorithm based on interpolation with radial basis functions is used for grid movements. The present numerical scheme is validated for an unsteady channel flow with a moving indentation. The present numerical results are found to agree well with experimental results reported in literature.  相似文献   

10.
The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods.Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.  相似文献   

11.
In this paper, a Cartesian grid method with cut cell approach has been developed to simulate two dimensional unsteady viscous incompressible flows with rigid bodies of arbitrary shape. A collocated finite volume method with nominally second-order accurate schemes in space is used for discretization. A pressure-free projection method is used to solve the equations governing incompressible flows. For fixed-body problems, the Adams-Bashforth scheme is employed for the advection terms and the Crank-Nicholson scheme for the diffusion terms. For moving-body problems, the fully implicit scheme is employed for both terms. The present cut cell approach with cell merging process ensures global mass/momentum conservation and avoid exceptionally small size of control volume which causes impractical time step size. The cell merging process not only keeps the shape resolution as good as before merging, but also makes both the location of cut face center and the construction of interpolation stencil easy and systematic, hence enables the straightforward extension to three dimensional space in the future. Various test examples, including a moving-body problem, were computed and validated against previous simulations or experiments to prove the accuracy and effectiveness of the present method. The observed order of accuracy in the spatial discretization is superlinear.  相似文献   

12.
Two pressure-correction algorithms are studied and compared to an approximate Godunov scheme on unsteady compressible cases. The first pressure-correction algorithm sequentially solves the equations for momentum, mass and enthalpy, with sub-iterations which ensure conservativity. The algorithm also conserves the total enthalpy along a streamline, in a steady flow. The second pressure-correction algorithm sequentially solves the equations for mass, momentum and energy without sub-iteration. This scheme is conservative and ensures the discrete positivity of the density. Total enthalpy is conserved along a streamline, in a steady flow. It is numerically verified that both pressure-correction algorithms converge towards the exact solution of Riemann problems, including shock waves, rarefaction waves and contact discontinuities. To achieve this, conservativity is compulsory. The two pressure-correction algorithms and the approximate Godunov scheme are finally compared on cases with heat source terms: all schemes converge towards the same solution as the mesh is refined.  相似文献   

13.
A numerical method devoted to the prediction of unsteady flows in complex domains with moving boundaries is presented. Based on the unsteady Euler equations with source terms to take diffusive effects into account as well as additional mass, momentum or enthalpy sources, it has been specially developed to model the thermal and dynamic behavior of the ambient air inside underground stations in the presence of moving trains. The numerical solution method is a unstructured finite-volume cell-centered scheme using the SIMPLE algorithm coupled with a second-order intermediate time stepping scheme. The spatial discretization is realized with an automatic Cartesian grid generator, complemented by a technique of sliding grids to handle straight moving bodies inside the domain.  相似文献   

14.
This paper investigates the applicability of the stencil-adaptive finite difference method for the simulation of two-dimensional unsteady incompressible viscous flows with curved boundary. The adaptive stencil refinement algorithm has been proven to be able to continuously adapt the stencil resolution according to the gradient of flow parameter of interest [Ding H, Shu C. A stencil adaptive algorithm for finite difference solution of incompressible viscous flows. J Comput Phys 2006;214:397-420], which facilitates the saving of the computational efforts. On the other hand, the capability of the domain-free discretization technique in dealing with the curved boundary provides a great flexibility for the finite difference scheme on the Cartesian grid. Here, we show that their combination makes it possible to simulate the unsteady incompressible flow with curved boundary on a dynamically changed grid. The methods are validated by simulating steady and unsteady incompressible viscous flows over a stationary circular cylinder.  相似文献   

15.
The work deals with numerical solution of the Navier–Stokes equations for incompressible fluid using finite volume and finite difference methods. The first method is based on artificial compressibility where continuity equation is changed by adding pressure time derivative. The second method is based on solving momentum equations and the Poisson equation for pressure instead of continuity equation. The numerical solution using both methods is compared for backward facing step flows. The equations are discretized on orthogonal grids with second, fourth and sixth orders of accuracy as well as third order accurate upwind approximation for convective terms. Not only laminar but also turbulent regimes using two-equation turbulence models are presented.  相似文献   

16.
This paper presents the latest developments of a discontinuous Galerkin (DG) method for incompressible flows introduced in [Bassi F, Crivellini A, Di Pietro DA, Rebay S. An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J Comput Phys 2006;218(2):794–815] for the steady Navier–Stokes equations and extended in [Bassi F, Crivellini A. A high-order discontinuous Galerkin method for natural convection problems. In: Wesseling P, Oñate E, Periaux J, editors. Electronic proceedings of the ECCOMAS CFD 2006 conference, Egmond aan Zee, The Netherlands, September 5–8; 2006. TU Delft] to the coupled Navier–Stokes and energy equations governing natural convection flows.

The method is fully implicit and applies to the governing equations in primitive variable form. Its distinguishing feature is the formulation of the inviscid interface flux, which is based on the solution of local Riemann problems associated with the artificial compressibility perturbation of the Euler equations. The tight coupling between pressure and velocity so introduced stabilizes the method and allows using equal-order approximation spaces for both pressure and velocity. Since, independently of the amount of artificial compressibility added, the interface flux reduces to the physical one for vanishing interface jumps, the resulting method is strongly consistent.

In this paper, we present a review of the method together with two recently developed issues: (i) the high-order DG discretization of the incompressible Euler equations; (ii) the high-order implicit time integration of unsteady flows. The accuracy and versatility of the method are demonstrated by a suite of computations of steady and unsteady, inviscid and viscous incompressible flows.  相似文献   


17.
A Cartesian cut-cell method which allows the solution of two- and three-dimensional viscous, compressible flow problems on arbitrarily refined graded meshes is presented. The finite-volume method uses cut cells at the boundaries rendering the method strictly conservative in terms of mass, momentum, and energy. For three-dimensional compressible flows, such a method has not been presented in the literature, yet. Since ghost cells can be arbitrarily positioned in space the proposed method is flexible in terms of shape and size of embedded boundaries. A key issue for Cartesian grid methods is the discretization at mesh interfaces and boundaries and the specification of boundary conditions. A linear least-squares method is used to reconstruct the cell center gradients in irregular regions of the mesh, which are used to formulate the surface flux. Expressions to impose boundary conditions and to compute the viscous terms on the boundary are derived. The overall discretization is shown to be second-order accurate in L1. The accuracy of the method and the quality of the solutions are demonstrated in several two- and three-dimensional test cases of steady and unsteady flows.  相似文献   

18.
A general conforming finite element scheme for computing viscous flows is presented which is of second-order accuracy in space and time. Viscous terms are treated implicitly and advection terms are treated explicitly in the time marching segment of the algorithm. A method for solving the algebraic equations at each time step is given. The method is demonstrated on two test problems, one of them being a plane vortex flow for which asymptotic methods are used to obtain suitable numerical boundary conditions at each time step.  相似文献   

19.
A new method to solve the Navier–Stokes equations for incompressible viscous flows and the transport of a scalar quantity is proposed. This method is based upon a fractional time step scheme and the finite volume method on unstructured meshes. The governing equations are discretized using a collocated, cell-centered arrangement of velocity and pressure. The solution variables are stored at the cell-circumcenters. Theoretical results and numerical properties of the scheme are provided. Predictions of lid-driven cavity flow, flows past a cylinder and heat transport in a cylinder are performed to validate the method.  相似文献   

20.
Our work is aimed at the development of numerical method for the modeling of transonic flow of wet steam including condensation/evaporation phase change. We solve a system of PDE’s consisting of Euler or Navier-Stokes equations for the mixture of vapor and liquid droplets and transport equations for the integral parameters describing the droplet size spectra. Numerical method is based on a fractional step technique due to the stiff character of source terms, i.e. we solve separately the set of homogenous PDE’s by the finite volume method and the remaining set of ODE’s either by explicit Runge-Kutta or implicit Euler method. The finite volume method is based on the Lax-Wendroff scheme with conservative artificial dissipation terms for structured grid. We also note result achieved by recently developed finite volume method with VFFC scheme. We discuss numerical results of steady and unsteady two-phase transonic flow in 2D nozzle, 2D and 3D turbine cascade and 2D turbine stage with moving rotor cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号