首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous alumina MCM-48 materials (denoted as Al-MCM-48) were synthesized as a potential hydrotreating catalyst supports for light-cycle oil (LCO). Diffusion phenomenon of typical large di-aromatic in LCO (i.e., 1-methylnaphthalene) in MCM-48, Al-MCM-48 samples and reference H-USY zeolite, and small aromatic (i.e., toluene) in one Al-MCM-48 sample were studied with the aid of standard zero length column (ZLC) technique. The influences of Si/Al ratio, dimension of aromatic molecule and the post-synthesis hydrothermal restructuring treatment on the diffusion behaviors have been investigated. Compared with conventional catalyst support like H-USY zeolite, Al-MCM-48 samples showed faster diffusion for 1-methylnaphthalen, demonstrating its advantage as a promising catalyst support. The diffusion results revealed that Si/Al ratio was an important factor for the transport process, which should be optimized. Post-synthesis treatment enhanced the diffusion of 1-methylnaphthalene but with limitation. The results also indicated that the overall diffusion of aromatic compounds in LCO was controlled by the mobility of di-aromatic molecules (i.e., 1-methylnaphthalene). Therefore, it is critical to select a catalyst support with improved diffusion of large di-aromatic molecules.  相似文献   

2.
X. Chen  L. Huang  G. Ding  Q. Li 《Catalysis Letters》1997,44(1-2):123-128
Mesoporous Al-MCM-41 materials of different Si/Al ratios have been synthesized and characterized by X-ray powder diffraction, 27Al and 29Si MAS NMR, differential thermogravimetric analysis, N2 adsorption measurements, FT-IR and catalytic cracking of alkanes. The experimental results show that the incorporation of aluminium into the framework of MCM-41 has a great effect on the degree of long-distance order, the surface acidities and the mesoporous structures of the materials. With increase of the aluminium content, the amounts of tetrahedral framework aluminium and the acid sites on the samples increase, but the acid strength decreases. Al-MCM-41 materials exhibit high activity for n-C16 0 cracking and good selectivity for producing low carbon alkylenes, particularly for i-C4 =.  相似文献   

3.
采用水热法合成出n(Si)/n(Al)=25的Al-MCM-48介孔分子筛,并用NH4NO3溶液处理得到H型的H-Al-MCM-48介孔分子筛。采用XRD、N2吸附–脱附、TEM等手段对样品进行了表征,并研究了样品对苯酚与叔丁醇烷基化反应催化性能。结果表明,合成的Al-MCM-48样品具有高度有序的立方介孔结构,H-Al-MCM-48的介孔有序性和比表面积有所降低,但样品仍具有MCM-48的立方结构。H-Al-MCM-48在苯酚与叔丁醇的烷基化反应中显示出良好的催化活性,在反应温度为140℃时苯酚的转化率高达98.9%。  相似文献   

4.
The effect of cationic template on the adsorption of aromatic compounds in MCM-41 was investigated in the present work. Various MCM-41 samples were prepared through controlling template removal during the synthesis of MCM-41 materials in which cationic surfactant was used as a template. The properties of synthesized samples were characterized with X-ray diffraction (XRD), nitrogen adsorption, FTIR and thermogravimetric analysis etc. The adsorption equilibriums of toluene, cumene and water on MCM-41 samples were measured using a digital microbalance. Compared with parent MCM-41 with template removed completely (denoted as MCM-41), the samples with template partially removed (denoted as C-MCM-41) exhibited moderate adsorption capacity for aromatic compounds. However, the adsorption equilibrium of water showed that the hydrophobicity on the surface of C-MCM-41 was significantly enhanced. The combination of moderate adsorption capacity for aromatics and hydrophobicity for water is desirable for the applications including removal of VOCs. It was found that the adsorption behaviors of aromatic compounds and water in various MCM-41 samples were governed by both porosity and cationic spots generated by cationic templates; and the former played a more important role than the latter when aromatics were adsorbed. The porosity and cation density of the MCM-41 material can be tailored by controlling the removal of the cationic template from the pore structure. The influence of template extraction methods on the structure and adsorption properties of MCM-41 materials has also been addressed.  相似文献   

5.
Aluminum- and calcium-incorporated MCM-41-type silica with various Al/Si and Ca/Si ratios were evaluated as catalytic supports for ring-opening polymerization (ROP) of l-lactide and ε-caprolactone. The catalytic centers were generated by grafting titanium(IV) isopropoxide onto the support. All prepared heterogeneous catalysts better restrained the ROP of lactide than the homogeneous analog, titanium(IV) isopropoxide. Compared to siliceous MCM-41, the incorporation of aluminum or calcium in MCM-41 framework improved the molecular weight of the polymers although it lessened the polymerization rate. The more acidic Al-MCM-41 support appeared to be more favorable than the more basic Ca-MCM-41 support for the ROP reactions.  相似文献   

6.
Al-MCM-41 and Fe-containing MCM-41 molecular sieves are hydrothermally synthesized. The low-angle XRD analysis shows that iron incorporation in Al-MCM-41 retains the hexagonal structure of MCM-41. The higher d-spacing values of Fe-Al-MCM-41 catalysts than those of Al-MCM-41 indicate the incorporation of iron into the framework. The mesoporous nature of the materials was confirmed by nitrogen adsorption isotherms. Electron paramagnetic resonance (EPR) and diffuse reflectance spectra (DRS) techniques confirm the tetrahedral coordination of iron into the Al-MCM-41 framework. Acidity of the synthesized catalysts was analyzed by both TPD of ammonia and pyridine-adsorbed FT-IR spectroscopy. The acidity measurements indicate that iron incorporation increases both Lewis and Brønsted acidity of the catalysts. Vapor-phase isopropylation of phenol with the new'alkylating agent isopropyl acetate was carried over the H-forms of the above catalysts. The phenol to isopropyl acetate ratio of 1?:?2 and the phenol space velocity of 1.1 h-1 were found to be the optimum conditions for better phenol conversion and para isomer (4-isopropyl phenol) selectivity. On comparison, the Fe-incorporated Al-MCM-41 catalysts show significantly higher phenol conversion and selectivity toward the important product 4-isopropyl phenol (4-IPP) may be due to stronger Brønsted acid sites generated by the strengthening effect of nearby Lewis acid sites. Further, the undesired and dialkylated products selectivity are found to be lower over Fe-incorporated Al-MCM-41 than pure Al-MCM-41 catalysts.  相似文献   

7.
MCM-48 aluminosilicates with different aluminium contents were synthesised by a room temperature procedure using tetraethoxysilane and aluminium sulfate, isopropoxide or tert-butoxide as metal sources. The samples were characterised by X-ray diffraction, nitrogen adsorption at 77 K, and 27Al MAS NMR and the catalytic activity tested in the reaction of 1-butene double bond position isomerisation. The influence of the synthesis time and calcination conditions, such as heating rate and time at final temperature, on the structural and catalytic properties of the materials was also evaluated. Aluminium isopropoxide and sulfate allowed the preparation of well structured Al-MCM-48 materials, with high specific pore volume and uniform pore size, and with the majority of the aluminium incorporated in tetracoordinated environment after calcination, at least down to Si/Al of 15. The highest initial conversions were found for samples with Si/Al = 20 and 30 prepared with aluminium isopropoxide and calcined using a heating rate of 3 K min−1, with those of samples prepared with aluminium sulfate being slightly lower. Al-MCM-48 materials with high specific pore volume and uniform size were also synthesised using aluminium tert-butoxide, but the materials were less well ordered, presented a higher proportion of hexa- and pentacoordinated Al species and exhibited lower initial conversions, independently of the synthesis time or calcination conditions tested. It is concluded that aluminium isopropoxide and sulfate are more adequate metal sources than aluminium tert-butoxide to prepare Al-MCM-48 catalysts by this room temperature method and a calcination heating rate of 3 K min−1 instead of 1 K min−1 produces more effectively active catalysts.  相似文献   

8.
《Fuel》2006,85(14-15):2202-2212
MCM-41, is one of the latest members of the mesoporous family of materials. They possess a hexagonal array of uniform mesopores (1.4–10 nm), high surface areas (>1000 m2/g) and moderate acidity. Due to these properties the MCM-41 materials are currently under study in a variety of processes as catalysts or catalyst supports. The objective of this study was to evaluate different types of MCM-41 materials as potential catalysts in the catalytic biomass pyrolysis process. We expected that the very high pore size and the mild acidity of these materials could be beneficial to reformulate the high molecular weight primary molecules from biomass pyrolysis producing useful chemical (and especially phenolic compounds) and lighter bio-oil with less heavy molecules. Three different samples of Al-MCM-41 materials (with different Si/Al ratio) and three metal containing mesoporous samples (Cu–Al-MCM-41, Fe–Al-MCM-41 and Zn–Al-MCM-41) have been synthesised, characterized and tested as catalysts in the biomass catalytic pyrolysis process using a fixed bed pyrolysis combined with a fixed catalytic reactor and two different types of biomass feeds. Compared to conventional (non-catalytic) pyrolysis, it was found that the presence of the MCM-41 material alters significantly the quality of the pyrolysis products. All catalysts were found to increase the amount of phenolic compounds, which are very important in the chemical (adhesives) industry. A low Si/Al ratio was found to have a positive effect on product yields and composition. Fe–Al-MCM-41 and Cu–Al-MCM-41 are the best metal-containing catalysts in terms of phenols production. The presence of the Al-MCM-41 material was also found to decrease the fraction of undesirable oxygenated compounds in the bio-oil produced, which is an indication that the bio-oil produced is more stable.  相似文献   

9.
Ni–Mo/Al2O3–MCM-41 supported catalysts have been investigated for modification of MCM-41 by using sol–gel alumina incorporation method. Different catalysts were synthesized with variation of Si/Al molar ratios of 10, 50, 100 and 200. High specific surface area ordered meso-porous solid (MCM-41) was synthesized by using organic template method. In order to modify the low acidity of silica solid, the surface of MCM-41 was modified by incorporation of alumina. The surface acidity of solids modified significantly with variation of alumina content in the supports. The sol–gel method of alumina incorporation was used, which does not modify extensively the pore characteristics of MCM-41 material during the preparation of Al2O3–MCM-41. The X-ray diffraction intensities indicated that alumina as well as MCM-41 were present in the synthesized supports. Additionally, the hydrothermal stability of the Al2O3–MCM-41 materials was maintained up to 873 K using sever conditions like 100% water vapor stream. The catalytic activity of the catalysts was tested in the hydrodesulfurization (HDS) of dibenzothiophene (DBT). Selectivity was oriented mainly to the production of biphenyl (BP) and for high Si/Al ratios toward cyclohexylbenzene (CHB) and showed a higher conversion and better selectivity to hydrogenation (cyclohexylbenzene).  相似文献   

10.
The acidic properties of Al-MCM-48 with Si/Al ratios ranging from 10 to 67, synthesized with Gemini surfactant as the template, have been characterized by a combination of multinuclear solid-state 1H, 23Na, 27Al, 29Si and 31P MAS (magic angle spinning) NMR and some double-resonance NMR methods using trimethylphosphine oxide (TMPO) as a probe molecule. XRD and 27Al MAS NMR results indicated that aluminum has been successfully incorporated into the framework of MCM-48 materials up to Si/Al = 17.9 by direct synthesis. 1H and 31P MAS NMR results strongly supported the generation of Brønsted acid sites in the cubic MCM-48 mesoporous material after the incorporation of aluminum, even without ion-exchange treatment. Double-resonance NMR techniques such as 31P/27Al TRAPDOR (Transfer Population in Double Resonance) and 29Si/31P REDOR (Rotational Echo in Double Resonance) NMR were performed to further correlate the TMPO probe molecule to the Brønsted acid sites in the silica framework. 31P/27Al TRAPDOR NMR experiments performed at different temperatures were able to establish the correlation between 31P and 27Al spins, further confirms the presence of Brønsted acid sites at 65 ppm in the 31P MAS NMR spectrum. Although the assignment of the Lewis acid sites was somehow unambiguous with 31P/27Al TRAPDOR NMR, the FT-IR observation of the calcined samples adsorbed with pyridine did reveal the presence of Lewis acid sites. In contrast to the pore size constraints of zeolites, 29Si/31P REDOR NMR results indicated that the protonated TMPO was highly mobile inside the mesoporous channels of Al-MCM-48 at the NMR time scale.  相似文献   

11.
A comprehensive study has been made on the cracking abilities of mesoporous aluminosillicate MCM-41 materials with different Si/Al ratios (15–∞) and pore diameters (1.6–3.0 nm) by using 1,3,5-triisopropylbenzene (1,3,5-TiPB) cracking as the test reaction. The roles of Al content and pore diameter on the catalytic features of the samples were evaluated by the conversion of 1,3,5-TiPB, coke content and deactivation parameters. It is found that the catalytic activity is mainly controlled by adsorptive properties towards the reactant and the dispersion of acid sites. In terms of their catalytic performances, cracking reaction over aluminosilicate mesoporous materials is more favorable for catalysts with smaller pore size and higher Al concentration. Moreover, coking is found responsible for catalyst deactivation during 1,3,5-TiPB cracking reaction over Al-MCM-41.  相似文献   

12.
The mesoporous molecular sieves Al-MCM-41 with Si/Al ratio equal to 16, was synthesized under hydrothermal conditions using cetyltrimethylammonium bromide (CTMA+Br) as surfactant. The same ratio of Al-MCM-41 materials was impregnated using sulfuric acid, the materials as sulfated Al-MCM-41 (SO42−/Al-MCM-41). The mesoporous materials viz Al-MCM-41 and SO42−/Al-MCM-41 were characterized using several techniques e.g. ICP-AES, Nephelometer, XRD, FT-IR, TG/DTA, N2-adsorption, solid-state-NMR, SEM and TPD-pyridine. ICP-AES studies indicated the presence of Al in the mesoporous materials. Nephelometer studies indicated the SO42− presence of the SO42−/Al-MCM-41. XRD studies indicated that the calcined materials of Al-MCM-41 and SO42−/Al-MCM-41 had the standard MCM-41 structure. The surface area, pore diameter, pore volume and wall thickness of the mesoporous materials were calculated by BET and BJH equations, respectively. Crystallinity, surface area, pore diameter and pore volume of SO42−/Al-MCM-41 decreased except wall thickness and the expelling aluminum from the Al-MCM-41 framework increased the Lewis acidity. FT-IR studies indicated that Al-ions were incorporated in the hexagonal mesoporous structure of Al-MCM-41 and sulfuric acid was impregnated into hexagonal Al-MCM-41 materials. The thermal stability of as-synthesized Al-MCM-41 materials and SO42−/Al-MCM-41 materials were studied using TG/DTA. The environments of the Al-ions coordinated in the silica matrix were determined by 27Al-MAS-NMR. The morphology of Al-MCM-41 and SO42−/Al-MCM-41 was determined by SEM. The total acidity of Al-MCM-41 and SO42−/Al-MCM-41 materials was determined by TPD-pyridine. The catalytic results were compared with those obtained by using sulfuric acid, amorphous silica–alumina, H-β, USY and H-ZSM-5 zeolites. The SO42−/Al-MCM-41 catalyst exclusively forms the product of dypnone from self-condensation of acetophenone molecules due to higher number of Lewis acid sites and has much higher yields than other catalysts except USY.  相似文献   

13.
Hydrothermal method was followed to synthesis the mesoporous Al-MCM-41 (Si/Al = 25, 50, 75 and 100) and Si-MCM-41 molecular sieves using a cetyltrimethylammonium bromide as a surfactant and the materials were unambiguously characterized by XRD, N2 sorption studies, 27Al MAS-NMR and TEM. The removal of oxalic acid from aqueous solution was studied through an adsorption process because oxalic acid may cause complexes with radioactive cations during decontamination operation in nuclear industry, which resulting in interferences in their removal by conventional treatment. Adsorption of oxalic acid over Al-MCM-41 shows the applicability of Langmuir isotherm and follows first order kinetics. The effects of parameters such as contact time, concentration of oxalic acid, adsorbents (various Si/Al ratios of Al-MCM-41, Si-MCM-41 and activated charcoal) and pH have been investigated to yield higher removal of oxalic acid. The percentage of oxalic acid adsorbed per unit gram of adsorbent for Al-MCM-41 at Si/Al = 100, 75, 50 and 25, Si-MCM-41, and activated charcoal are 34.6, 40.9, 51.4, 61.3, 16.1 and 60, respectively. Retainment of crystallinity and absence of structural collapse of Al-MCM-41 after desorption and adsorption of oxalic acid, respectively has been achieved in this study.  相似文献   

14.
硼铝骨架改性中孔分子筛的合成与表征   总被引:5,自引:0,他引:5  
以正硅酸乙酯(TEOS)为硅源,以十六烷基三甲基溴化铵(CTABr)为结构模板剂,在碱必条件下采用水热晶化法成功合成了B-Al骨架改性的中孔分子筛MCM-41。通过XRD、TG-DTG、IR、N2等温物理吸附等多种表征手段对其进行结构、性质分析;发现B有助于Al进入Si-MCM-41中孔分子筛的无机骨架中,B-Al-MCM-41比Al-MCM-41的晶体完整性好;同时掺入B、Al后的中孔结构分子筛与全硅MCM-41中孔分子筛相比,无机墙表面基团的性质不同,比表面积稍小,最可几孔径稍大,孔径分布较宽;Al,B同晶取代Si进入MCM-41无机骨架人会使其中孔结构发生一些变化,因而合成的B-Al-MCM-41必将有不同的催化、吸附性能。  相似文献   

15.
The potential application of hybrid ZSM-5/Al-MCM-41 zeolitic-mesostructured materials as supports of metallocene polymerization catalysts has been investigated and compared with the behaviour of standard mesoporous Al-MCM-41 and microporous ZSM-5 samples. Hybrid zeolitic-mesostructured solids were prepared from zeolite seeds obtained with different Si/Al molar ratios (15, 30 and 60), which were assembled around cetyltrimethylammonium bromide (CTAB) micelles to obtain hybrid materials having a combination of both zeolitic and mesostructured features. (nBuCp)2ZrCl2/MAO catalytic system was impregnated onto the above mentioned solid supports and tested in ethylene polymerization at 70 °C and 5 bar of ethylene pressure. Supports and heterogeneous catalysts were characterized by X-ray powder diffraction, nitrogen adsorption-desorption isotherms at 77 K, transmission electron microscopy, 27Al-MAS-NMR, ICP-atomic emission spectroscopy and UV-vis spectroscopy.Catalysts supported over hybrid ZSM-5/Al-MCM-41 (Si/Al = 30-60) exhibited the best catalytic activity followed by those supported on Al-MCM-41 (Si/Al = 30-60). However, catalyst supported on ZSM-5 gave lower polymerization activity because of its microporous structure with narrower pores and lower textural properties than hybrid and mesoporous materials.Although higher acid site population shown by hybrid materials could contribute to the stabilization of the metallocene system on the support, in this case their better catalytic performance is mainly ascribed to the larger textural properties.  相似文献   

16.
Metal ion doped MCM-41 mesoporous molecular sieves (M-MCM-41, M = Al, Ga, Sn, Zr and Fe) were prepared using a hydrothermal synthesis method, with metal chlorides serving as the dopant sources. The M-MCM-41 structures were characterized by Fourier transform infrared spectroscopic (FTIR) analysis, X-ray diffraction, energy dispersive spectroscopy and N2 adsorption–desorption measurement. The surface of M-MCM-41 acidities were determined by NH3 temperature-programmed desorption and pyridine-adsorption FTIR analysis, and their catalytic performance for methanol dehydration to dimethyl ether (DME) was evaluated. The results showed that the prepared M-MCM-41, which exhibited a structure similar to that of MCM-41 with long-range ordered mesoporous structure, contained weak acidic sites. The number of weak acid sites in Al-MCM-41 increased as the Al content increased. The Al content in Al-MCM-41 had an important effect on its catalytic performance, where the highest catalytic activity was 80 and 100 % DME selectivity was achieved at a Si/Al molar ratio of 10. For MCM-41 doped with various types of metal ions, M-MCM-41 (M = Al, Ga, Sn and Zr) also presented a similar wide distribution of acidity, and their catalytic activities were ranked in the following order: Al-MCM-41 > Ga-MCM-41 > Zr-MCM-41 > Fe-MCM-41 > Sn-MCM-41, which were related to the coordination of the metal ions.  相似文献   

17.
Al-MCM-41介孔分子筛吸附喹啉的性能   总被引:1,自引:1,他引:0       下载免费PDF全文
王云芳  步长娟  迟志明  李倩 《化工学报》2015,66(9):3597-3604
在碱性条件下,采用水热晶化法,以偏硅酸钠为硅源,铝酸钠为铝源,CTAB为结构模板剂,成功合成出了含铝介孔分子筛Al-MCM-41。采用XRD、BET等手段对合成的Al-MCM-41进行表征,对柴油中的氮化物喹啉进行了吸附实验,考察了Al-MCM-41介孔分子筛对氮化物喹啉的吸附能力,探究了硅铝比为60的Al-MCM-41分子筛对喹啉溶液吸附的热力学和动力学行为,测得353.15~393.15 K 温度范围内的吸附等温线数据,用Langmuir、Freundlich方程对此进行拟合,并根据热力学原理计算得到吸附过程中的ΔH、ΔG、ΔS值和吸附表观活化能。结果表明, 硅铝比为60的Al-MCM-41具有较大的孔容、比表面积和较窄的孔径分布,结晶度和有序性高。等温吸附平衡符合Freundlich 等温线模型,其ΔH -0.7682 kJ·mol-1,ΔG -28.1215 kJ·mol-1, ΔS 73.2434 J·mol-1·K-1,吸附动力学符合Pseudo拟二级方程,Ea为2.8575 kJ·mol-1。  相似文献   

18.
Mesoporous Si-MCM-41 and Al-MCM-41 (Si/Al = 100) materials were synthesized via a hydrothermal method. Three different ratios (10, 20 and 30 wt%) of heteropoly tungstic acid (HPWA) was loaded on Si-MCM-41 by wet impregnation techniques. The characteristic structural features of the prepared materials were studied by various physico-chemical techniques such as X-ray diffraction (XRD), Nitrogen physisorption (BET), temperature programmed desorption of ammonia (TPD) and transmission electron microscopy (TEM). Transesterification of diethyl malonate (DEM) with n-butanol under autogeneous conditions in a temperature range from 50 to 125 °C was selected as the test reaction for the as synthesized materials. The reactants were fed with various mole ratios in order to determine the optimal feed composition leading to maximum yields of transesterified products. The results indicated that the conversion of diethylmalonate depends on the HPWA concentration on the support, temperature, reaction time and mole ratio of the reactants. Further, the catalytic efficiency of HPWA/MCM-41 was compared with that of Al-MCM-41. The solid acid HPWA/MCM-41 catalysts have several advantages in comparison to conventional mineral acid catalysts which are heterogeneous, eco-friendly, highly active and selective in the formation of transesters.  相似文献   

19.
以十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,乙二胺为碱性介质,当n(TEOS)∶n(NaAlO2)(或LaCl3)∶n(CTAB)∶n(H2NCH2CH2NH2)∶n(H2O)=1∶X∶0 12(或0 14)∶3 5(或8 0)∶130,其中X=0 1,0 05,0 033时,水热法合成了硅铝(硅镧)摩尔比为10、20和30的Al MCM 41和La MCM 41介孔分子筛。通过XRD、IR、NH3 TPD吸附脱附、BET及CCl4吸附等方法对分子筛的晶体结构和表面物性进行了研究,结果表明,合成的分子筛具有典型的六方介孔结构特征。将Al MCM 41和La MCM 41分子筛分别用于催化乙氧基化反应,研究结果表明,Al MCM 41的催化活性高于La MCM 41,当Al MCM 41用量为正辛醇质量的3%,反应温度为120℃,反应压力0 2MPa,n(正辛醇)∶n(环氧乙烷)=1∶2时,正辛醇聚氧乙烯醚产品的收率达85%。  相似文献   

20.
The acidity and catalytic properties of aluminosilicate mesoporous molecular sieves with the MCM-41 structure and bulk Si/Al ratios in the 10–60 range have been investigated. The incorporation of 4-coordinate aluminium into the structure of MCM-41 generates both BrØnsted and Lewis acid sites in amounts increasing with the degree of incorporation. However, the BrØnsted/Lewis acid population ratio is independent of the content of aluminium. The number and strength of acid sites generated are comparable to those of a pillared acid-activated clay and lower than in zeolite H-Y with Si/Al=3.65. Aluminosilicate MCM-41 is a moderate catalyst for the conversion of cumene which proceeds predominantly via catalytic cracking to propene and benzene. The sample of MCM-41 with the highest content of framework aluminium (Si/Al=10) has the largest number of BrØnsted acid sites and exhibits highest catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号