首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electrical and optical properties of pulsed laser deposited amorphous indium tin oxide films at room temperature are discussed. The films were grown from indium oxide (In2O3) targets of different tin (Sn) doping content (0, 5 and 10 wt%) at different oxygen pressures (PO2) ranging from 1×10−3 to 5×10−2 Torr. The electrical and optical properties of the films were examined by Hall measurements and optical spectrophotometry. It was found that high conductivity amorphous films could be prepared at room temperature irrespective of the Sn doping content. The properties of these films deposited from 0, 5, 10 wt% Sn-doped In2O3 targets show a similar response to changes in PO2. The maximal conductivity of (4.0, 2.1 and 1.8)×103 S/cm and optical transmittance (visible) higher than 90% were obtained at PO2 region of (1–1.5)×10−2 Torr. An undoped In2O3 film produced the highest conductivity of 4×103 S/cm in these studies.  相似文献   

2.
We photographed the impact of molten metal droplets on a flat plate. From these images we measured droplet dimensions during spreading and counted the number of fingers around a splashing drop. Experiments were done using stainless steel substrates with average roughness of 0.06, 0.07, 0.56, and 3.45 μm respectively. The temperature of the substrate was kept at either 25 or 240 °C. Droplet diameter (2.2 mm) and impact velocity (4 m/s) were kept constant, giving a Reynolds number (Re) of 31 135 and Weber number (We) of 463.Raising substrate roughness from 0.06 to 0.56 μm enhanced the tendency of droplet to splash, whereas increasing roughness even further to 3.45 μm suppressed splashing. This behaviour was attributed to changes in droplet solidification rate with surface roughness. A simple model of droplet spreading was used to estimate thermal contact resistance between the droplet and surface. Increasing surface roughness was found to raise thermal contact resistance and reduce heat transfer from the droplet to the substrate, delaying the onset of solidification and reducing splashing. The number of fingers formed around a droplet splashing on a smooth surface could be predicted reasonably well by a model based on Rayleigh-Taylor instability theory. Increasing surface roughness reduced the number of fingers while enlarging their size.  相似文献   

3.
Thin films of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) were deposited on (1 0 0) silicon and on GDC electrolyte substrates by rf-magnetron sputtering using a single-phase oxide target of LSCF. The conditions for sputtering were systematically studied to get dense and uniform films, including substrate temperature (23–600 °C) background pressure (1.2 × 10−2 to 3.0 × 10−2 mbar), power, and deposition time. Results indicate that to produce a dense, uniform, and crack-free LSCF film, the best substrate temperature is 23 °C and the argon pressure is 2.5 × 10−2 mbar. Further, the electrochemical properties of a dense LSCF film were also determined in a cell consisting of a dense LSCF film (as working electrode), a GDC electrolyte membrane, and a porous LSCF counter electrode. Successful fabrication of high quality (dense and uniform) LSCF films with control of thickness, morphology, and crystallinity is vital to fundamental studies of cathode materials for solid oxide fuel cells.  相似文献   

4.
Radiation damages due to 8 MeV electron irradiation in electrical properties of CuInSe2 thin films have been investigated. The n-type CuInSe2 films in which the carrier concentration was about 3×1016 cm−3, were epitaxially grown on a GaAs(0 0 1) substrate by RF diode sputtering. No significant change in the electrical properties was observed under the electron fluence <3×1016 e cm−2. As the electron fluence exceeded 1017 e cm−2, both the carrier concentration and Hall mobility slightly decreased. The carrier removal rate was estimated to be about 0.8 cm−1, which is slightly lower than that of III–V compound materials.  相似文献   

5.
The ratio of CO2 emissions from power plants to natural emissions is a measure of the environmental impact associated with geothermal power production. Emissions from Icelandic geothermal power plants amounted to 1.6 × 108 kg year−1 in 2002. Two independent estimates of natural CO2 emissions range between 1 × 108 and 2 × 109 kg year−1. Thus, power plant emissions are significant compared to estimated total emissions (i.e., not less than 8–16%). However, direct CO2 flux measurements from four of the approximately 40 geothermal/volcanic systems in the country amounted to 3 × 108 kg year−1, indicating that these estimates of the total natural flux may be too low.  相似文献   

6.
Nanostructured CdS was grown by electrodeposition of cadmium sulfide inside a porous alumina template. Uniform pore size and spacing in the template was achieved when the starting material for the template was aluminum foil. Typical pore size was 45 nm. Nanostructured CdS was also deposited by electrodeposition on indium tin oxide (ITO)-coated glass and by solution growth on ITO-coated glass. Schottky diodes were formed on nanocrystalline CdS and the analysis of their current–voltage characteristics yielded a diode ideality factor (n) of 2.6 and a reverse saturation current density (JS) of 1.00×10−5 A/cm2. Corresponding values for the Schottky diode on polycrystalline CdS were 3.4 and 1.93×10−6 A/cm2.  相似文献   

7.
An improvement of electrical properties of pulsed laser crystalllized silicon films was achieved by simple heat treatment with high-pressure H2O vapor. The electrical conductivity of 7.4×1017 cm−3 phosphorus-doped 50-nm-thick pulsed laser crystallized silicon films was markedly increased from 1.6×10−5 S/cm (as crystallized) to 2 S/cm by heat treatment at 270°C for 3 h with 1.25×106 Pa H2O vapor because of reduction of density of defect states localized at grain boundaries. Spin density was reduced from 1.7×1018 cm−3 (as crystallized) to 1.2×1017 cm−3 by heat treatment at 310°C for 3 h with 1.25×106 Pa H2O vapor.  相似文献   

8.
We developed new heat-resisting transparent conductive oxide (TCO) films with resistivity of 1.4×10−4 Ω cm, an optical transmittance of above 80% (at 550 nm) and heat-resisting temperature at above 600 °C. The TCO films consists of fluorine-doped tin oxide films coated on indium–tin oxide films. They were prepared by a spray pyrolysis deposition method on glass substrates. The 100×100 mm2 dye-sensitized solar cells (DSCs) were prepared with the TCO films. An energy conversion efficiency of the DSC was improved drastically in comparison to the case with conventional TCO films.  相似文献   

9.
Indium tin oxide (ITO) thin films were deposited by ion beam sputtering. This paper aimed at the reach of high conductivity and high transmittance simultaneously at relatively low substrate temperature. In order to reach the objects, the influences of substrate temperature, ion beam energy, and oxygen gas flowing rate on the properties of deposited ITO films were investigated. Resistivity showed the lowest value of 1.5×10−4 Ω cm on the films deposited by 1.3 keV Ar ions at 100°C. The microstructure of the films was sub-grain (domain) structure. The ITO films have above 80% of transmittance in the visible wavelength including that of the glass substrate.  相似文献   

10.
Relatively stable high bandgap hydrogenated amorphous silicon (a-Si:H) films were prepared by the microwave electron cyclotron resonance (ECR) hydrogen plasma CVD method using SiH2Cl2 source gas. The substrate position relative to the position of the generation of reactive species affects the structure of these films. The films prepared under optimized condition showed rather high bandgap, 1.83 eV. However, the defect density was low, 3 × 1015 cm−3, and the photosensitivity was greater than 7 orders of magnitudes. The defect density was found to saturate at relatively low values ( 3 × 1016 cm−3) independent of the illumination intensity.  相似文献   

11.
High-energy proton irradiation (380 keV and 1 MeV) on the electrical properties of CuInSe2 (CIS) thin films has been investigated. The samples were epitaxially grown on GaAs (0 0 1) substrates by Radio Frequency sputtering. As the proton fluence exceeded 1×1013 cm−2, the carrier concentration and mobility of the CIS thin films were decreased. The carrier removal rate with proton fluence was estimated to be about 1000 cm−1. The electrical properties of CIS thin films before and after irradiation were studied between 80 and 300 K. From the temperature dependence of the carrier concentration in CIS thin films, we found ND=9.5×1016 cm−3, NA=3.7×1016 cm−3 and ED=21 meV from the fitting to the experimental data on the basis of the charge balance equation. After irradiation, a defect level was created, and NT=1×1017 cm−3 for a fluence of 3×1013 cm−2, NT=5.7×1017 cm−3 for a fluence of 1×1014 cm−2 and ET=95 meV were also obtained from the same fitting. The new defect, which acted as an electron trap, was due to proton irradiation, and the defect density was increased with proton fluence.  相似文献   

12.
Spray pyrolysis process has been used to deposit highly transparent and conducting films of tin-doped indium oxide onto glass substrates. The electrical, structural and optical properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrate. The morphology of the surface as a function of the substrate temperature has been studied using atomic force microscopy. XRD has shown that deposited films are polycrystalline without second phases and have a preferred orientation (4 0 0). Indium tin oxide layers with low resistivity values around 4×10−5 Ω cm and transmission coefficients in the visible and near-infrared range of about 85–90% have been easily obtained.  相似文献   

13.
Polycrystalline silicon films have been prepared by hot-wire chemical vapor deposition (HWCVD) at a relatively low substrate temperature of 430°C. The material properties have been optimized for photovoltaic applications by varying the hydrogen dilution of the silane feedstock gas, the gas pressure and the wire temperature. The optimized material has 95% crystalline volume fraction and an average grain size of 70 nm. The grains have a preferential orientation along the (2 2 0) direction. The optical band gap calculated from optical absorption by photothermal deflection spectroscopy (PDS) showed a value of 1.1 eV, equal to crystalline silicon. An activation energy of 0.54 eV for the electrical transport confirmed the intrinsic nature of the films. The material has a low dangling bond-defect density of 1017 cm3. A photo conductivity of 1.9 × 10−5 Ω−1cm−1 and a photoresponse (σphd) of 1.4 × 102 were achieved. A high minority-carrier diffusion length of 334 nm as measured by the steady-state photocarrier grating technique (SSPG) and a large majority-carrier mobility-lifetime (μτ) product of 7.1 × 10−7cm2V−1 from steady-state photoconductivity measurement ensure that the poly-Si : H films possess device quality. A single junction n---i---p cell made in the configuration n+-c-Si/i-poly-Si: H/p-μc-Si : H/ITO yielded 3.15% efficiency under 100 mW/cm2 AM 1.5 illumination.  相似文献   

14.
Thin films of tungsten oxide (WO3) were deposited onto glass, ITO coated glass and silicon substrates by pulsed DC magnetron sputtering (in active arc suppression mode) of tungsten metal with pure oxygen as sputter gas. The films were deposited at various oxygen pressures in the range 1.5×10−2−5.2×10−2 mbar. The influence of oxygen sputters gas pressure on the structural, optical and electrochromic properties of the WO3 thin films has been investigated. All the films grown at various oxygen pressures were found to be amorphous and near stoichiometric. A high refractive index of 2.1 (at λ=550 nm) was obtained for the film deposited at a sputtering pressure of 5.2×10−2 mbar and it decreases at lower oxygen sputter pressure. The maximum optical band gap of 3.14 eV was obtained for the film deposited at 3.1×10−2 mbar, and it decreases with increasing sputter pressure. The decrease in band gap and increase in refractive index for the films deposited at 5.2×10−2 mbar is attributed to the densification of films due to ‘negative ion effects’ in sputter deposition of highly oxygenated targets. The electrochromic studies were performed by protonic intercalation/de-intercalation in the films using 0.5 M HCl dissolved in distilled water as electrolyte. The films deposited at high oxygen pressure are found to exhibit better electrochromic properties with high optical modulation (75%), high coloration efficiency (CE) (141.0 cm2/C) and less switching time at λ=550 nm; the enhanced electrochromism in these films is attributed to their low film density, smaller particle size and larger thickness. However, the faster color/bleach dynamics is these films is ascribed to the large insertion/removal of protons, as evident from the contact potential measurements (CPD) using Kelvin probe. The work function of the films deposited at 1.5 and 5.2×10−2 mbar are 4.41 and 4.30 eV, respectively.  相似文献   

15.
Polycrystalline silicon (poly-Si) films were deposited on glass by very high-frequency (100 MHz) plasma enhanced chemical vapor deposition from a gaseous mixture of SiF4 and H2 with small amounts of SiH4. (2 2 0) oriented films prepared at small SiF4/H2 ratios (<30/40 sccm) showed intrinsic transport properties of poly-Si. However, the room temperature dark conductivity (σd) of the (4 0 0) oriented film was very high for intrinsic poly-Si, 7.2×10−4S/cm. This conductivity exhibited a T−1/4 behavior, suggesting a high defect density at the grain boundaries. It was found that in situ hydrogen plasma treatment successfully produced (4 0 0) oriented poly-Si with a reasonably low σd of 4.5×10−7S/cm and a good photoconductivity of 1.3×10−4S/cm.  相似文献   

16.
F-doped ZnO thin films were prepared by using the spray pyrolysis technique. The dependence of the electrical, optical, structural and morphological properties on the substrate temperature and spray solution acidity was studied. Additionally, aging of the spray solution presents a clear effect on the resistivity of ZnO thin films. The best films obtained show a resistivity, mobility and carrier concentration of the order of 1.5×10−2 Ω cm, 6 cm2/V s and 2×1019 cm−3, respectively. Wurtzite hexagonal structure, with a preferential growth along the [0 0 2] direction for all substrate temperatures and acidities used, was obtained. From scanning electron microscopy and atomic force microscopy analysis, it was determined that the grain size of the films decreases and its homogeneity increases when the acidity of the starting solution is increased. High optical transmittances, in the order of 90%, were obtained in all the cases.  相似文献   

17.
A series of amino-containing sulfonated poly(aryl ether ketone)/4,4′-diglycidyl(biphenyl) epoxy resin (DGBP) composite membranes for proton exchange membranes fuel cells (PEMFCs) are prepared by solution blending and casting. The reaction kinetics and the effects of introduction of DGBP content on the properties of the composite membranes are thoroughly investigated. The crosslinked composite membranes after treatment at either 120 °C or 200 °C have improved oxidative and dimensional stability than those without crosslinking. Despite the fact that crosslinked membranes generally have lower proton conductivity in comparison with the original ones, the proton conductivities of the membranes treated at 120 °C are above 2.22 × 10−2 S cm−1 at room temperature and 9.42 × 10−2 S cm−1 at 100 °C. Even for the samples treated at 200 °C, their proton conductivities are still higher than 1.26 × 10−2 S cm−1 at room temperature and higher than 8.67 × 10−2 S cm−1 at 100 °C, which are well satisfied with elementary requirement of fuel cells. In addition, all the evaluated membranes have low methanol permeability. For example, the methanol permeability of AP6FSPEEK/DGBP1 cured at 200 °C is 0.33 × 10−6 cm2 s−1, which is an order magnitude lower than Nafion 117. Therefore, these novel crosslinked composite membranes could be potential usage in fuel cells.  相似文献   

18.
An all-solid-state electrochromic (EC) device based on NiO/WO3 complementary structure and solid polyelectrolyte was manufactured for modulating the optical transmittance. The device consists of WO3 film as the main electrochromic layer, single-phase hybrid polyelectrolyte as the Li+ ion conductor layer, and NiO film as the counter electrochromic layer. Indium tin oxide- (ITO) coated glass was used as substrate and ITO films act as the transparent conductive electrodes. The effective area of the device is 5×5 cm2. The device showed an optical modulation of 55% at 550 nm and achieved a coloration efficiency of 87 cm2 C−1. The response time of the device is found to be about 10 s for coloring step and 20 s for bleaching step. The electrochromic mechanism in the NiO/WO3 complementary structure with Li+ ion insertion and extraction was investigated by means of cyclic voltammograms (CV) and X-ray photoelectron spectroscopy (XPS).  相似文献   

19.
The SrFeCo0.5Oy system combines high electronic/ionic conductivity with appreciable oxygen permeability at elevated temperatures. This system has potential use in high-temperature electrochemical applications such as solid oxide fuel cells, batteries, sensors, and oxygen separation membranes. Dense ceramic membranes of SrFeCo0.5Oy are prepared by pressing a ceramic powder prepared by using a sol–gel combustion technique. Oxygen and hydrogen permeation at high temperature on this material are studied. Measurements are conducted using a time-dependent permeation method at the temperature in the range of 1073–1273 K with oxygen- and hydrogen-driving pressures in the range (3×102)–(1×105) Pa (300–1000 mbar). The maximum oxygen-permeated flux at 1273 K is 6.5×10−3 mol m−2 s−1. The activation energies for the O2-permeation fluxes and diffusivities are 240 and 194 kJ/mol, respectively. Due to the high fragility, the high temperature for the measurements and the high oxygen permeation through such material, a special membrane holder, and compression sealing system have been designed and realized for the permeation apparatus.  相似文献   

20.
A study of the physical properties of CdTe thin films doped with Bi is presented. CdTe:Bi thin films were deposited by the close space vapor transport (CSVT) technique using powdered CdTe:Bi crystals grown by the vertical Bridgman method. CdTe:Bi crystals were obtained with nominal Bi doping concentrations varying in the 1×1017–8×1018 cm−3 range. The physical properties of CdTe:Bi thin films were studied performing photoluminescence, X-ray, SEM, photoacoustic spectroscopy and resistivity measurements. We observed a decrease of the resistivity values of CdTe:Bi films with the Bi content as low as 6×105 Ω-cm for Bi concentrations of 8×1018 cm−3. These are meaningful results for CdTe-based solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号