首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thailand experiences a great economic and industrial development and is the second largest energy consumer in South East Asia. Being a net oil importer, Thai government has declared a renewable energy development programme in order to secure sustainable development and energy security. Thailand spends more than 10% of GDP for energy imports and transport sector accounts for 36% of total final energy consumption of which 50% is diesel. Diesel marks a huge impact on Thai economy. Thai government's bio-diesel development strategy is to replace 10% of petro-diesel in transport sector by bio-diesel by 2012. The plan is to increase the use of bio-diesel from 365 million liters in 2007 to 3100 million liters by 2012. This paper reviews the current status and potential of bio-diesel in Thailand and investigates and discusses the qualities and weaknesses of the proposed road-map. The proposed road-map definitely gives immediate solution for soaring oil prices, but the long-term economic, environmental and social impacts need to be examined.  相似文献   

2.
The red ceramic industry in Brazil, consisting of over 7000 companies, requires large amounts of thermal energy, currently being met mainly by native fuelwood, which causes serious deforestation and soil erosion problems. The use of firewood does not allow achieving good energy performance in industrial ceramic kilns, causing high energy losses, low productivity and low quality products (bricks and roof tiles). Thus, to implement higher added value products, besides mitigate environmental problems caused by deforestation, the use of natural gas by the sector seems to be a promising alternative. Brazil’s natural gas market has grown at a fast pace in recent years. Its share in the country’s primary energy consumption increased from 3.7% to 9.3% between 1998 and 2007, compared to almost 21% in the world. The development of the Brazilian natural gas industry was grounded on stepping up supplies through integration with Bolivia from where natural gas is imported, together with fiscal incentives for promoting the demand. This paper estimates that the natural gas market that could be developed in the Brazilian red ceramic industry corresponds to less than 5% of the total industrial natural gas consumption, meaning that a major technological transformation of the country’s red ceramic industry will not severely affect the natural gas market equilibrium, contributing to reduce the country’s high rates of deforestation.  相似文献   

3.
Power sector scenarios for Thailand are constructed in this paper to represent the range of opportunities and constraints associated with divergent set of technical and policy options. They include Business-As-Usual (BAU), No-New-Coal (NNC), and Green Futures (GF) scenarios over a 20-year period (2002–2022). The results from the BAU scenario show that fossil fuels will continue to dominate electricity generation in Thailand during the study period. Similar results are obtained for the NNC option, although the dependence shifts from coal and oil towards natural gas-based power generation. This may represent a better environmental pathway but an all out shift from coal to natural gas is likely to increase Thailand's dependence on imported fuel, making it more vulnerable to unstable global oil and gas prices. The GF scenario offers a more optimistic route that allows the country to confront its energy security dilemma whilst fulfilling its environmental commitments by giving renewable energy technologies a prominent place in the country's power generation mix. Over the study period, our result showed little difference between the three scenarios in terms of financing new generation plants despite an early misgiving about the viability of an ambitious renewable energy programme. This paper also goes beyond the financial evaluation of each scenario to provide a comparison of the scenarios in terms of their greenhouse gas emissions together with the comparative costs of emissions reductions. Indeed, if such externalities are taken into account to determine ‘viability’, the GF scenario represents an attractive way forward for the Thai power sector.  相似文献   

4.
Thailand uses 74% of its natural gas supply for power generation and 70% of its power comes from gas-based technology. High dependence on natural gas in power generation raises concerns about security of electricity supply that could affect competitiveness of Thai manufacturing and other industries at the global level. The effect of fuel dependence on security of electricity supply has received less emphasis in the literature. Given this gap, this research examines the economic impact of high dependence on natural gas for power generation in Thailand by analyzing the effect of changes in fuel prices (including fuel oil and natural gas) on electricity tariff in Thailand. At the same time, the research quantifies the vulnerability of the Thai economy due to high gas dependence in power generation. Our research shows that for every 10% change in natural gas price, electricity tariff in Thailand would change by 3.5%. In addition, we found that the gas bill for power generation consumed between 1.94% and 3.05% of gross domestic product (GDP) between 2000 and 2004 and in terms of GDP share per unit of energy, gas dependence in power generation is almost similar to that of crude oil import dependence. We also found that the basic metal industry, being an electricity intensive industry, is the most affected industry. Additionally, we find that volatility of gas price is the main factor behind the vulnerability concern. The research accordingly simulates two mitigation options of the problem, namely reducing gas dependence and increasing efficiency of gas-fired power plants, where the results show that these methods can reduce the vulnerability of the country from high gas dependence in power generation.  相似文献   

5.
This paper aims to select the optimal energetic scenario applied to a consumer with 100 000 inhabitants from the residential–tertiary sector, from the ecological, energetical and economic points of view. A series of seven scenarios based on natural gas has been analyzed. The authors proposed six scenarios for the combined heat and power generation using existing technologies and one scenario for separate generation of the two energy forms. To compare the seven energetic scenarios, the amount of thermal and electrical energy produced by each one had to be the same for a defined time period. To select the optimal energy scenario a multi-criteria NAIADE-based method has been used. Consequently, the optimal energy scenario has been established with respect to criteria groups: ecologic, economic, energetic and global where all criteria groups have been considered. The study results prove that a combined gas and steam turbine cycle is optimal technically, economically and ecologically as it is for each criteria group. A sensitivity analysis has been performed to establish the influence of various parameters in the identification of the optimal energy scenario. For all analyzed scenarios, the optimal energetic scenario is the combined gas and steam turbine cycle.  相似文献   

6.
7.
Electricity generation in Thailand is highly dependant on natural gas. Recent research has revealed that the Thai economy would become more vulnerable from high gas dependence in the power sector. This paper aims to assess the economic impact of gas dependence in power generation in the coming decades. To fulfil this objective, two scenarios of electricity capacity planning were developed and the results were analysed to understand the changes in gas dependence and the effects on import reliance. It is found that from 2011 to 2025, the average cost of natural gas for power generation will account for 2.41% of gross domestic product (GDP) while high oil price in international energy markets would push this cost to 2.97% of GDP. In addition, reliance on fuel imports for power generation, particularly natural gas and coal, is going to be another crucial concern to the security of energy supply as the costs of these imports during the planning horizon will increase significantly at an average rate of 6.78% per year.  相似文献   

8.
Electric power generation in Mexico is mainly based on fossil fuels, specifically heavy fuel oil, although the use of natural gas combined cycles (NGCC) is becoming increasingly important. This is the main destination that has promoted growing imports of natural gas, currently accounting for about 20% of the total national annual consumption. Available crude oil is becoming heavier; thus refineries should be able to process it, and to handle greater quantities of refinery residuals. If all refinery residuals are used in cogeneration plants serving petroleum refineries, the high heat/power ratio of refinery needs, leads to the availability of appreciable quantities of electricity that can be exported to the public utility. Thus, in a global perspective, Mexican imports of natural gas may be reduced by cogeneration using refinery residuals. This is not the authors’ idea; in fact, PEMEX, the national oil company, has been entitled by the Mexican congress to sell its power leftovers to The Federal Electricity Commission (CFE) in order to use cogeneration in the way described for the years to come. A systematic way of determining the cogeneration potential by using refinery residuals from Mexican refineries is presented here, taking into account residual quantities and composition, from a national perspective, considering expected scenarios for Maya crude content going to local refineries in the years to come. Among different available technologies for cogeneration using refinery residuals, it is believed that the integrated gasification combined cycle (IGCC) would be the best option. Thus, considering IGCC plants supplying heat and power to refineries where it is projected to have refinery residuals for cogeneration, the expected electric power that can be sent to the public utility is quantified, along with the natural gas imports mitigation that may be attained. This in turn would contribute to a necessary fuel diversification policy balancing energy, economy and ecology.  相似文献   

9.
Turkey is in a strategically advantageous position in terms of its natural gas market. Being in the middle of Europe and energy-rich countries of Central Asia, it can be an energy corridor between these two regions. It can import gas from a number of countries and diversify its sources. This situation may also provide motivation for a competitive gas market. The recent reform in the market, which began in 2001, was an attempt to strengthen the natural gas market to this end. However, the reform has not worked out as expected so far. This article discusses recent restructuring efforts in the Turkish natural gas market. We focus on the legal structure and economic consequences of the legal change within the international economic relations. After presenting a detailed discussion of the legal framework, we draw attention to the problems of the industry and difficulties in the transition to a more competitive market structure. In the end, we touch upon some regulatory issues and potential conflicts.  相似文献   

10.
The diffusion of cogeneration and trigeneration plants as local generation sources could bring significant energy saving and emission reduction of various types of pollutants with respect to the separate production of electricity, heat and cooling power. The advantages in terms of primary energy saving are well established. However, the potential of combined heat and power (CHP) and combined cooling heat and power (CCHP) systems for reducing the emission of hazardous greenhouse gases (GHG) needs to be further investigated. This paper presents and discusses a novel approach, based upon an original indicator called trigeneration CO2emission reduction (TCO2ER), to assess the emission reduction of CO2 and other GHGs from CHP and CCHP systems with respect to the separate production. The indicator is defined in function of the performance characteristics of the CHP and CCHP systems, represented with black-box models, and of the GHG emission characteristics from conventional sources. The effectiveness of the proposed approach is shown in the companion paper (Part II: Analysis techniques and application cases) with application to various cogeneration and trigeneration solutions.  相似文献   

11.
Bilge Hacisalihoglu   《Energy Policy》2008,36(6):1867-1872
This article deals with natural gas policy of Turkey. Natural gas became important in the 1980s. In recent years, natural gas consumption has become the fastest growing primary energy source in Turkey. Natural gas becomes an increasingly central component of energy consumption in Turkey. Current gas production in Turkey meets 3% of the domestic consumption requirements. Natural gas consumption levels in Turkey have witnessed a dramatic increase, from 4.25 Bcm (billion cubic meters) in 1991 to 21.19 Bcm in 2003. Turkish natural gas is projected to increase dramatically in coming years, with the prime consumers expected to be industry and power plants. Turkey has chosen natural gas as the preferred fuel for the massive amount of new power plant capacity to be added in coming years. Turkey has supplied main natural gas need from Russian Federation; however, Turkmen and Iranian gas represent economically sound alternatives. Turkey is in a strategically advantageous position in terms of its natural gas market. It can import gas from a number of countries and diversify its sources. Turkey's motivation for restructuring its natural gas ownership and markets stems from its desire to fulfill EU accession prerequisites in the energy sector.  相似文献   

12.
The performance of residential micro combined heat and power (micro-CHP)—a technology to provide heat and some electricity to individual dwellings—is generally dependent on the magnitude of household thermal energy demand. Dwellings with larger and more consistent thermal consumption perform well economically and achieve greater greenhouse gas emissions savings. Consequently, the performance of micro-CHP is dependent on the level of thermal insulation in a dwelling. Therefore, emerging policy approaches regarding energy use in the residential sector, which generally support both energy efficiency measures such as thermal insulation and adoption of micro-CHP, may inadvertently incentivise micro-CHP installation where CO2 reductions are meagre or not cost-effective. This article examines this issue in terms of the changes in economic and environmental performance that occur for three micro-CHP technologies under changing patterns of residential thermal insulation in the United Kingdom. The results of this analysis are used to comment on the structure of policy instruments that support micro-CHP. It is found that simultaneous support for energy efficiency measures and micro-CHP can be justified, but care must be taken to ensure that the heat-to-power ratio and capacity of the micro-CHP system are appropriate for the expected thermal demand of the target dwelling.  相似文献   

13.
This paper provides a set of specific examples to show the effectiveness of the trigeneration CO2emission reduction (TCO2ER) indicator proposed in the companion paper (Part I: Models and indicators) to assess the greenhouse gas (GHG) emission reduction from cogeneration and trigeneration systems. Specific break-even analyses are developed by introducing further indicators, with the aim of assessing the conditions for which different types of combined systems and conventional separate production systems are equivalent in terms of GHG emissions. The various emission indicators are evaluated and discussed for a number of relevant application cases concerning cogeneration and trigeneration solutions with different types of equipment. Scenario analyses are carried out to assess the possible emission reduction benefits from extended diffusion of cogeneration and trigeneration in regions characterized by different energy generation frameworks. The results strongly depend on the available technologies for combined production, on the composition of the energy generation mix, and on the trend towards upgrading the various generation systems. The numerical outcomes indicate that cogeneration and trigeneration solutions could bring significant benefits in countries with prevailing electricity production from fossil fuels, quantified by the use of the proposed indicators.  相似文献   

14.
Total site integration offers energy conservation opportunities across different individual processes and also to design as well as to optimize the central utility system. In total site integration of the overall process, indirect integration with intermediate fluids or through a central utility system are preferred as it offers greater advantages of flexibility and process control but with reduced energy conservation opportunities. To achieve the maximum possible indirect integration between processes assisted heat transfer, i.e., heat transfer outside the region between process pinch points, plays a significant role. A new concept is proposed in this paper for total site integration by generating a site level grand composite curve (SGCC). Proposed SGCC targets the maximum possible indirect integration as it incorporates assisted heat transfer. In this paper, a methodology is proposed to estimate the cogeneration potential at the total site level, utilizing the concept of multiple utility targeting on the SGCC. The proposed methodology to estimate the cogeneration potential is simple and linear as well as utilizes the rigorous energy balance at each steam header.  相似文献   

15.
The paper reports the results of a new generalized price-augmented Working-based (Tran Van Hoa and Reece, 1989) six-equation model of energy consumption in Thailand for the period 1974–1987, and provides improved 2SHI (Tran Van Hoa, 1986) forecasts for six petroleum products for the period 1991–2000. The forecasts are particularly useful in complete fuel-cycle greenhouse-gas emission approaches (e.g. Wilson, 1990) to study the impact of energy consumption on the environment.  相似文献   

16.
In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil.  相似文献   

17.
We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gasturbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results:  相似文献   

18.
This paper presents an historical approach on the development of the existing biomass carbonization technologies in industrial operation in Brazil, the biggest charcoal producing country in the world. The gravimetric yield of charcoal from wood does not usually surpass 25%; the time of each operation cycle is more than seven days; and less than 50% of the energy contained in the feedstock is transformed into charcoal – the rest is discharged into the environment. The electricity generation associated with charcoal production is nowadays inexistent in Brazil. This paper presents the development of an industrial technology of semi-continuous pyrolysis process, characterized by using metallic kilns with forced exhaust system: the Rima Container Kiln (RCK). The results of the test runs are related to 5 m3 and 40 m3 kilns, with a thermal power of 200 kW (pilot scale: 5 m3) and 3000 kW (industrial scale: 40 m3). The low heating value of the pyrolysis gases is 670 and 1470 kJ/m³, respectively.The main results are: a 3 h carbonization time; an average productivity per kiln of 1 ton of charcoal per hour; and a gravimetric yield of 35%. In this paper, four scenarios for the conversion of exhaust gases and tar into electricity were evaluated: the Conventional Rankine Cycle (CRC) and the Organic Rankine Cycle (ORC), each one with and without forest residues utilization. It is shown that the best economic indicators correspond to the scenario where ORC technology is used. The electricity generation cost is around U$30/MWhe for ORC and US$40/MWhe for CRC.  相似文献   

19.
A major focus of the current energy debate is how to meet the future demand for electricity. Conservation in buildings and industry, and conversion of utility central station capacity to alternate fuels will play a major role in meeting this demand. But cost-effective conservation measures can only go so far, and the industrial and commercial sectors ultimately will have to seek alternative sources of energy. Moreover, electric utilities may face financial, environmental, or other constraints on the conversion of their existing capacity to fuels other than oil, or on the construction of new alternate-fuelled capacity. A wide range of alternate fuels and conversion technologies has been proposed for the industrial, commercial, and electric utility sectors. One of the most promising commercially available technologies is cogeneration. Cogeneration systems produce both electrical (or mechanical) energy and thermal energy from the same primary energy source. This paper reviews the present day cogeneration technologies based on renewable sources of energy. Study of novel methods, existing designs, theoretical and experimental analyses, modeling and simulation, environmental issues and economics and related energy policies have been discussed in this paper.  相似文献   

20.
Y. Huangfu  J.Y. Wu  R.Z. Wang  Z.Z. Xia  S. Li 《Applied Energy》2007,84(12):1356-1373
As a kind of distributed energy system, internal-combustion-engine-based cogeneration system is attracting increasing attentions for its environmental friendly and economic qualities. Some problems are encountered in the application, such as jacket water temperature control and the recovery/management of waste heat. To solve these problems, the concept of “integrated thermal management controller” (ITMC) is presented in this paper. Experimental prototype is established to verify its operation principle. Experimental results show that the prototype can effectively control the temperature in variable working conditions. Water/R22 is a good combination of working fluid/non-condensable gas in temperature control. The regulation of hot water flow rate is an effective method to adjust the heat allocated to heat consumer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号