首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the type, composition and distribution of inclusions contained in an API5L X100 steel were characterized by scanning electron microscopy and energy-dispersive x-ray analysis. A hydrogen-charging at various current densities was used to introduce hydrogen into the steel, and the correlation between HIC and the inclusions was established. The microstructure of the steel consists of a leather-like bainitic ferrite matrix, with martensite/austenite as the second phase particles. At least four types of inclusions are contained in API5L X100 steel, elongated MnS inclusions and spherical Al-, Si- and Ca-Al-O-S-enriched inclusions. In particular, the majority of inclusions in the steel are Al-enriched. Upon hydrogen-charging, hydrogen blisters and HIC could be caused in the steel in the absence of external stress. The cracks are primarily associated with the Al- and Si-enriched inclusions, rather than the elongated MnS inclusion. The critical amount of hydrogen resulting in HIC of the tested API5L X100 steel is determined to be 3.24 ppm under condition in this work.  相似文献   

2.
An optimum finish rolling deformation (FRD) of thermomechanical controlled processing (TMCP) is suggested to improve the hydrogen-induced ductility loss of high-vanadium X80 pipeline steel in this study. The results demonstrate that with increasing FRD the microstructure refines, the grain size of the steel decreases and the recrystallization degree deepens. The increase of FRD leads to the reduction of low angle grain boundaries (LAGBs) and the grains oriented with plane {100} parallel to normal direction ({100}//ND) fibres, which plays a significant role in improving the resistance of crack propagation. Besides, the differences of effective hydrogen diffusion coefficient and diffusible hydrogen concentration are negligible among four experimental steels with various FRD. However, the best hydrogen-induced ductility loss resistance is obtained in the steel with 40% FRD containing the most nano-scale precipitates acting as effective hydrogen traps.  相似文献   

3.
Hydrogen induced cracking (HIC) susceptibility of the welded X100 pipeline steel was evaluated in NACE “A” solution at room temperature according to the NACE TM0284-2011 standard. Both the kinetic parameters of the permeability (JL), the apparent diffusivity (Dapp) and the concentration of reversible and irreversible hydrogen in the base metal and welded joint of X100 pipeline steel were quantitatively investigated by hydrogen permeation test. The results showed that the welded joint with an inhomogeneous microstructure had a higher trap density and more susceptible to HIC due to two orders of magnitude larger in the concentration of irreversible hydrogen than that of base metal, though all presenting poor HIC resistance for both base metal and the welded joint. The HIC cracks initiated from the inclusions enriching in Al, Ca, Si, Mn. The cracks are primarily transgranular, accompanying with limited intergranular ones.  相似文献   

4.
The purpose of this work was to improve the resistance of hydrogen-induced cracking in API 5L X70 steel by engineering the crystallographic texture and grain boundary distributions via different rolling temperatures. Hydrogen-induced cracking and electrochemical hydrogen charging tests were carried out in two different conditions: commercially produced and isothermally rolled at 850 °C in laboratory. The results showed that the development of dominant {011} grains parallel to the normal direction, and a small number of {001}//ND grains obtained by isothermal rolling at 850 °C, increased the hydrogen-induced crack resistance; while the hot rolled sample with sharp {001}//ND textures was highly susceptible to cracking.  相似文献   

5.
6.
The slow strain rate tensile experiments are carried out to investigate the tensile properties of X80 pipeline steel in hydrogen blended natural gas environments with different H2/CH4/CO contents. Mechanical properties and fracture morphologies are further analyzed. The results show that the hydrogen embrittlement susceptibility of X80 steel can be inhibited by the presence of CH4/CO, and the inhibition mechanisms are discussed. When the CH4 contents increase above 20 vol%, the inhibition on hydrogen embrittlement of X80 steel is stabilized. By comparison, the inhibitory effect of CO is more significant.  相似文献   

7.
In this study, the effect of Ce content on hydrogen induced cracking (HIC) of X80 pipeline steel has been investigated. The results show that as the Ce content increased from 0 wt% to 0.0042 wt%, 0.016 wt% and 0.024 wt%, the HIC susceptibility of tested steels decreased first and then increased. The steel containing 0.016 wt% Ce possessed the lowest HIC susceptibility because Ce modified inclusions, promoted the formation of acicular ferrite, and decreased the number of hydrogen traps and intergranular cracks.  相似文献   

8.
In this study, the number and size distribution of vanadium precipitates and their effects on hydrogen trapping efficiency and hydrogen-induced cracking (HIC) susceptibility were investigated in X80 pipeline steel. The results showed that as the vanadium content increased, the number of nanoscale vanadium precipitates clearly increased. Furthermore, the amount of hydrogen atoms trapped by vanadium precipitates gradually increased and the hydrogen diffusion coefficient decreased from 4.74 × 10?6 cm2 s?1 in the vanadium-free V0 steel to 8.48 × 10?7 cm2 s?1 in the V4 steel with 0.16% V, according to hydrogen permeation results. It also reduced the possibility of hydrogen atoms diffusing into the sites of harmful defects such as large-size oxides and elongated MnS inclusions, where cracks were caused more easily. In addition, the V3 steel with 0.12% V, containing the largest number of vanadium carbide particles of less than 60 nm, had the lowest HIC susceptibility.  相似文献   

9.
As a kind of high strength microalloyed steel, pipeline steel has high strength and toughness. However, the formation of the intercritically reheated coarse-grained heat affected zone (ICCGHAZ) during the welding process is an important limitation affecting its performance. Herein, microstructural transformation in the ICCGHAZ of X100 pipeline steel after a secondary thermal cycle and hydrogen sulfide stress corrosion cracking (SSCC) resistance of the transformed microstructure are investigated. The microstructure of X100 pipeline steel after the secondary thermal cycle is similar to that after the primary thermal cycle, comprising lath bainite and granular bainite. With an increase in t8/5 (time required for the material to cool from 800 °C to 500 °C), the M-A constituents that continuously precipitate along the prior austenite grain boundaries in the second thermal cycle are coarsened and form a necklace-type structure. A variation in t8/5 does not significantly affect the crystallographic characteristics of the ICCGHAZ. The stress corrosion test shows that the resistance to SSCC decreases and cleavage fracture characteristics become more noticeable with an increase in t8/5.  相似文献   

10.
Different heat treatment cycles were designed in order to investigate the effect of microstructural changes on hydrogen induced cracking resistance (HIC) and mechanical properties of the electric resistance welded steel. The heat treating of the as-welded specimen improved the ductility and impact toughness. After heat treatment, the uniform hardness profile was obtained for the welded specimens. The removal of local hard zones reduced the risk of HIC. The chemical composition and clustering of inclusions have a deleterious effect on cracking resistance in the H2S environment. Aluminosilicate compounds and MnS inclusions were favorite sites for HIC. The most promising post weld heat treatment for improving mechanical properties and the resistance to HIC was the application of two-cycle quenching followed by tempering.  相似文献   

11.
The low-cycle fatigue and fatigue crack growth (FCG) properties of X80 pipeline steel in hydrogen atmosphere were determined to investigate the variation of hydrogen pressure and its influence on fatigue life. The test environment was switched to a hydrogen atmosphere after 1000, 3000, or 5000 cycles of pre-fatigue testing in a nitrogen atmosphere. Notch tensile tests were conducted in nitrogen and hydrogen atmospheres after the specimens were pre-fatigued for 3000 or 5000 cycles. The results showed that the cycles to failure of X80 decreased exponentially with increasing hydrogen pressure. When the displacement amplitude (DA) values remained steady (below 3000 cycles), the X80 steels showed no noticeable deterioration in the fatigue properties with or without hydrogen. When the DA values increased (above 5000 cycles), cracks propagated slowly and fatigue properties were strongly reduced in the hydrogen atmosphere, but not in nitrogen. Hydrogen-accelerated crack growth dominates the reduction of fatigue life below 0.6 MPa of hydrogen pressure. Hydrogen-accelerated crack initiation plays a more important role than FCG in the reduction of fatigue life with increasing hydrogen pressure.  相似文献   

12.
In this study, simulated heat-affected zone (HAZ) of Nb-free and Nb-bearing steel were obtained, and SEM, TEM, and slow strain rate tensile (SSRT) tests were performed to investigate the effect of Nb on the stress corrosion cracking (SCC) behavior of high-strength low-alloy (HLSA) steel in simulated seawater with or without hydrogen charging. The addition of Nb significantly refined the grains and uniformed the microstructure of HLSA. Nb hardly affected the SCC susceptibility of BM and HAZ without hydrogen-charging. However, after charging with 10 mA cm−2, the SCC resistance of Nb-bearing steel, especially the coarse grain HAZ (CGHAZ) improved drastically, and the process of crack initiation and propagation was inhibited owing to the hydrogen trap function of NbC precipitates.  相似文献   

13.
The effect of the tensile stress on the hydrogen permeation of MS X65 pipeline with sulfide films was investigated through measuring the steady-state hydrogen permeation current (I), permeability (JL) and apparent diffusivity (Dapp) and quantitatively analysing the hydrogen-permeable resistance factor (HPRF) of single tensile stress HPRF (stress), single sulfide film HPRF (film) and the two together HPRF (stress-film). The results indicated that JL and sub-surface hydrogen concentration (co) greatly increase and that Dapp decreases as the elastic stress increases. When applying plastic stress, JL and Dapp all reduce, while co continues to increase without the film but decreases with the film. While single tensile stress can promote hydrogen permeation, with the sulfide film, the value of HPRE (stress-film) is not a simple addition of the value of the HPRE (stress) and the HPRE (film), and the interaction results in the blocking effect of hydrogen permeation. The surface morphology of the sulfide films changes caused by tensile stress should be responsible for the HPRE (stress-film) reducing as tensile stress increases but increasing with plastic tensile stress.  相似文献   

14.
The effect of microstructural features on the hydrogen induced cracking (HIC) susceptibility of two API 5L X65 pipeline steels were investigated by cathodic charging, hydrogen permeation and hydrogen microprint experiments. Microstructural evaluation after hydrogen charging revealed cracks at the mid-thickness (segregation zone) of both plates. However, more severe cracks were observed in the plate with higher dislocation density and residual stresses. The plate with lower plastic strain and more {111}-oriented grains had less severe cracks. Inclusions found along the crack path, comprising of Si-enriched oxides and carbides contributed to the initiation and propagation of cracks. The variation of the trapping behaviour and hydrogen diffusion through the plates were examined. The results confirmed that a higher ratio of reversible to irreversible traps contributes to increasing HIC severity in steels. Additionally, hydrogen transport through the steels was most prominent along the grain boundaries, indicating the importance of grain boundary character to HIC.  相似文献   

15.
The self-restraint testing was used to investigate the influence of hydrogen content, preheating, and post-heating on the sensitivity of welding of API X70 pipeline steel to hydrogen induced cracking (HIC). The variation of hydrogen content was applied using a low hydrogen electrode E8018-G and a high hydrogen (cellulosic) electrode E8010-P1. Diffusible hydrogen of these electrodes was measured by mercury displacement method. The average diffusible hydrogen content of cellulosic electrode E8010-P1 and low hydrogen electrode E8018-G were 43.6 and 1.1 ml/100 g of weld metal, respectively. The results of visual inspection, penetrant test, and macroscopic examination showed that welding with cellulosic electrode leads to cracking unless both preheating and post-heating are applied. However, in the case of low hydrogen electrode, cracking occurs only if no preheating or post-heating is applied. The microstructure of the welded specimens in different conditions by optical and scanning electron microscopy (SEM) showed that the dominant phase in the weld zone of all specimens is bainite. The microhardness profile displayed that hardness limitation (350 HV) cannot predict the sensitivity to cold cracking; therefore, other parameters such as hydrogen content should also be considered.  相似文献   

16.
马晶  龚小涛  马安博 《工业加热》2020,(4):32-36,42
采用Gleeble-3500型热模拟试验机结合显微组织观察和硬度测试法获取了X100管线钢的临界点温度并绘制出实验钢的过冷奥氏体的连续冷却转变曲线(CCT曲线),分析了连续冷却过程中材料的组织转变规律。结果表明:不同冷却速度下,试验钢获取了不同的显微组织类型。当冷却速率为0. 5~10℃/s时,试验钢的主体组织为准多边形铁素体和粒状贝氏体;当冷却速度在20~50℃/s,试验钢形成了细小、多位向分布的贝氏体和弥散分布的M/A组元,试验钢钢因具备复相组织,通过软硬两相的搭配,赋予了材料高的强、塑特性。  相似文献   

17.
In this study, the effect of a low partial hydrogen in a mixture with natural gas on the tensile, notched tensile properties, and fracture toughness of pipeline steel X70 is investigated. An artificial HE aging is simulated by exposing the tested sample to the mixture gas condition for 720 h. In addition, a series of tests is conducted in ambient air and 10 MPa of 100% He and H2. Overall, 10 MPa of 100% H2 significantly degrades the mechanical properties of an X70 pipeline steel. However, it is observed that the 10 MPa gas mixture with 1% H2 does not affect the mechanical properties when tested with a smooth tensile specimen. In the notched tensile test, a significant reduction in loss in the area is observed when tested with a notched specimen with a notch radius of 0.083 mm. It is also confirmed that a 10-MPa gas mixture with 1% H2 causes a remarkable reduction in the toughness. The influence of the exposure time to 1% hydrogen in a mixture with natural gas was found to be minor.  相似文献   

18.
Blending hydrogen into existing natural gas pipelines has been proposed as a means of increasing the output of renewable energy systems such as large wind farms. X80 pipeline steel is commonly used for transporting natural gas and such steel is subjected to concurrent hydrogen invasion with mechanical loading while being exposed to hydrogen containing environments directly, resulting in hydrogen embrittlement (HE). In accordance with American Society for Testing and Materials (ASTM) standards, the mechanical properties of X80 pipeline steel have been tested in natural gas/hydrogen mixtures with 0, 5.0, 10.0, 20.0 and 50.0vol% hydrogen at the pressure of 12 MPa. Results indicate that X80 pipeline steel is susceptible to hydrogen-induced embrittlement in natural gas/hydrogen mixtures and the HE susceptibility increases with the hydrogen partial pressure. Additionally, the HE susceptibility depends on the textured microstructure caused by hot rolling, especially for the notch specimen. The design calculation by the measured fatigue data reveals that the fatigue life of the X80 steel pipeline is dramatically degraded by the added hydrogen.  相似文献   

19.
Microstructural response of AISI 316L stainless steel to laser peening (LP) was examined by means of optical microscopy (OM) and transmission electron microscopy (TEM) in order to analyze the effects of LP on hydrogen-induced cracking (HIC) resistance. Depth profiles of near-surface microhardness and surface compressive residual stress (CRS) of LP treated specimens were presented respectively. Slow strain rate tensile tests were performed on the hydrogen-charged samples and their corresponding stress-strain curves as well as fracture morphologies were finally investigated in detail. The results demonstrated that LP induced a grain refinement effect on the treated surface while a maximum refining rate of 56.18% was achieved at the laser power density of 10 GW/cm2. The near-surface microhardness also exhibited an attenuation trend with the increasing depth. The surface CRS positively correlated with power density before it reached a threshold value. A special U-shaped dislocation tangle band was observed in the LP treated specimen which served as hydrogen trapping sites. The LP treated samples exhibited better toughness after hydrogen charging from both macro mechanical properties and micro fracture morphologies. LP-induced grain refinement and CRS are believed to be the main contributing factors towards inhibiting the diffusion of hydrogen atoms which ultimately leads to the reduction of the hydrogen embrittlement sensitivity of AISI 316L stainless steel.  相似文献   

20.
Environmental hydrogen embrittlement has become a non-negligible problem in the hydrogen blended natural gas transportation. To qualitatively study the degradation mechanism of X80 steel used in the natural gas pipelines, the slow strain tensile experiments are carried out in this work. The nitrogen and hydrogen are adopted to simulate the hydrogen blended natural gas to explore the tensile properties of X80 steel. According to the volume proportion of hydrogen, the test atmospheres are divided into the reference atmosphere and the hydrogen-contained atmospheres of 1%, 2.2% and 5%. The tensile experiments of the smooth and notched specimens are conducted in the above gas atmospheres. Mechanical properties and fracture morphologies after stretching are further analyzed. The results show that the hydrogen blended natural gas has little effect on the tensile and yield strengths. Distinguished from the hydrogen volume proportion of 1% and 2.2%, with the increase of hydrogen proportion, the effect of hydrogen on mechanical properties of specimens increases significantly. Moreover, the deteriorated mechanical properties of notched specimens are more seriously than those of smooth specimens. This work provides the basis for safe hydrogen proportion for X80 pipeline steel when transporting hydrogen blended natural gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号