首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Automated tool condition monitoring is an important issue in the advanced machining process. Permutation entropy of a time series is a simple, robust and extremely fast complexity measure method for distinguishing the different conditions of a physical system. In this study, the permutation entropy of feed-motor current signals in end milling was applied to detect tool breakage. The detection method is composed of the estimation of permutation entropy and wavelet-based de-noising. To confirm the effectiveness and robustness of the method, typical experiments have been performed from the cutter runout and entry/exit cuts to cutting parameters variation. Results showed that the new method could successfully extract significant signature from the feed-motor current signals to effectively detect tool flute breakage during end milling. Whilst, this detection method was based on current sensors, so it possesses excellent potential for practical and real-time application at a low cost by comparison with the alternative sensors.  相似文献   

2.
In this paper, a novel method based on lifting scheme and Mahalanobis distance (MD) is proposed for detection of tool breakage via acoustic emission (AE) signals generated in end milling process. The method consists of three stages. First, by investigating the specialty of AE signals, a biorthogonal wavelet with impact property is constructed using lifting scheme, and wavelet transform is carried out to separate AE components from the original signals. Second, Hilbert transform is adopted to demodulate signal envelope on wavelet coefficients and salient features indicating the tool state (i.e., normal conditions, slight breakage, and serious breakage) are extracted. Finally, tool conditions are identified directly through the recognition of these features by means of MD. Practical application results on a CNC vertical milling machine tool show that the proposed method is accurate for feature extraction and efficient for condition monitoring of cutting tools in end milling process.  相似文献   

3.
This paper presents on-line tool breakage detection of small diameter drills by monitoring the AC servo motor current. The continuous wavelet transform was used to decompose the spindle AC servo motor current signal and the discrete wavelet transform was used to decompose the feed AC servo motor current signal in time–frequency domain. The tool breakage features were extracted from the decomposed signals. Experimental results show that the proposed monitoring system possessed an excellent on-line capability; in addition, it had a low sensitivity to change of the cutting conditions and high success rate for the detection of the breakage of small diameter drills.  相似文献   

4.
An overview of approaches to end milling tool monitoring   总被引:1,自引:0,他引:1  
The increase in awareness regarding the need to optimise manufacturing process efficiency has led to a great deal of research aimed at machine tool condition monitoring. This paper considers the application of condition monitoring techniques to the detection of cutting tool wear and breakage during the milling process. Established approaches to the problem are considered and their application to the next generation of monitoring systems is discussed. Two approaches are identified as being key to the industrial application of operational tool monitoring systems.Multiple sensor systems, which use a wide range of sensors with an increasing level of intelligence, are seen as providing long-term benefits, particularly in the field of tool wear monitoring. Such systems are being developed by a number of researchers in this area. The second approach integrates the control signals used by the machine controller into a process monitoring system which is capable of detecting tool breakage. Initial findings mainly under laboratory conditions, indicate that both these approaches can be of major benefit. It is finally argued that a combination of these approaches will ultimately lead to robust systems which can operate in an industrial environment.  相似文献   

5.
On-line monitoring of tool cutting conditions and tool breakage is very important for automated factories of the future. In this paper, the time series based tooth period modeling technique (TPMT) is proposed for detecting tool breakage by monitoring a cutting force or torque signal in any direction. TPMT uses the fast a posteriori error sequential technique (FAEST) for on-line modeling of cutting force or torque signals. Tool breakage is detected by evaluating variations of the characteristics of the monitored signal in each tooth period. TPMT was tested on simulated and experimental end milling data. The proposed technique detected tool breakage in all of the test cases without giving any false alarms in the transition cases.  相似文献   

6.
Tool wear and breakage detection is one of the most important problems found during manufacture in automated CNC machines. From several techniques devoted to sense tool condition, driver current monitoring has been used for a sensorless approach. In order to efficiently use the driver current monitoring technique an exhaustive analysis on the nature of the real components of the signal is required. The novelty of this paper is to present a driver current signal analysis to estimate the influence of the most important spurious signal components in order to determine the optimal parameters for signal conditioning. Beside the cutting force signal, the spurious signals considered in the analysis are high-frequency noise, current control commutation and ball screw effects. The analysis is compared with experimental data in order to validate the model and a case study is presented to show the general procedure.  相似文献   

7.
Detection of tool breakage is of vital importance in automated manufacturing. Various methods have been attempted, and it is considered that the use of discrete wavelet transform (DWT), which is much more efficient and just as accurate wavelet analysis, may provide a realistic solution to the detection of tool breakage in operation. The DWT uses an analyzing wavelet function which is localized in both time and frequency to detect a small change in the input signals. In addition, it requires less computation than Fast Fourier Transformation (FFT). This paper discusses a tool breakage monitoring system based on DWT of an acoustic emission (AE) and an electric feed current signal using an effective algorithm. The experiment results show overall 98.5% reliability and the good real-time monitoring capability of the proposed methodology for detecting tool breakage during drilling.  相似文献   

8.
In a fully automated manufacturing environment, instant detection of the cutting tool condition is essential for the improved productivity and cost effectiveness. This paper studies a tool condition monitoring system (TCM) via machine learning (ML) and machine ensemble (ME) approach to investigate the effectiveness of multisensor fusion technique when machining 4340 steel with multilayer coated and multiflute carbide end mill cutter. In this study, 135 different features are extracted from multiple sensor signals of force, vibration, acoustic emission and spindle power in the time and frequency domain by using data acquisition and signal processing module. Then, a correlation-based feature selection technique (CFS) evaluates the significance of these features along with machining parameters collected from machining experiments. Next, an optimal feature subset is computed for various assorted combinations of sensors. Finally, machine ensemble methods based on majority voting and stacked generalization are studied for the selected features to classify not only flank wear but also breakage and chipping. It has been found in this paper that the stacked generalization ensemble can ensure the highest accuracy in tool condition monitoring. In addition, it has been shown that the support vector machine (SVM) outperforms other ML algorithms in most cases tested.  相似文献   

9.
Tool condition monitoring in turning using fuzzy set theory   总被引:2,自引:0,他引:2  
This paper presents a study on tool condition monitoring in turning using the fuzzy set theory. The tool conditions considered include tool breakage, several states of tool wear, and chatter. Force, vibration, and power sensors are used in this study to monitor the three components of the cutting force, i.e. acceleration of the tool holder in two perpendicular directions, and the spindle motor current respectively. A total of 11 monitoring indices (signature features) are selected to describe the signature characteristics of various tool conditions. A linear fuzzy equation is proposed to describe the relationship between the tool conditions and the monitoring indices. The proposed methodology is verified experimentally using a total of 396 cutting tests performed at 52 different cutting conditions. The proposed methodology is also compared with that of several classification schemes, including the K-mean and the Fisher's pattern recognition methods, the nearest neighbor method and the fuzzy C-mean method. The results indicate an overall 90% reliability of the proposed methodology for detecting tool conditions regardless of the variation in cutting conditions.  相似文献   

10.
Acoustic Emission (AE) signals have been used to monitor tool condition in conventional machining operations. In this paper, new procedures are proposed to detect tool breakage and to estimate tool condition (wear) by using AE. The proposed procedure filters the AE signals with a narrow band-width, band-pass filter and obtains the upper envelope of the harmonic signal by using analog hardware. The envelope is digitized, encoded and classified to monitor the machining operation. The characteristics of the envelope of the AE were evaluated to detect tool breakage. The encoded parameters of the envelope of the AE signals were classified by using the Adaptive Resonance Theory (ART2) and Abductory Induction Mechanism (AIM) to estimate wear. The proposed tool breakage and wear estimation techniques were tested on the experimental data. Both methods were found to be acceptable. However, the reliability of the tool breakage detection system was higher than the wear estimation method.  相似文献   

11.
This paper introduces a new diagnosis technique for tool breakage in face milling using a support vector machine (SVM). The features of spindle displacement signals are first fed into the kernel-based SVM decision function. After the SVM learning procedure, the SVM can respond in real-time to automatically diagnose tool fracture under varying cutting conditions. Experimental results show that this new approach can detect tool breakage in a wide range of face-milling operations.  相似文献   

12.
Development of a tool failure detection system using multi-sensors   总被引:3,自引:0,他引:3  
Tool monitoring and machine diagnosis in real machining have been crucial to the realization of fully automated machining. Also, the on-line detection technique of the tool breakage in machining should be supported. The effect of tool breakage is usually revealed from an abrupt change in the processed measurements, which is in excess of a threshold value. Although these techniques are generally effective for a specific cutting condition, they are often not sufficiently reliable for use in production due to the inability of single measurement to reflect tool breakage under various cutting conditions. In order to enhance the reliability of tool breakage signatures obtained from a single sensor, an integrated approach based on measurements from several sensors has been put forward. In this study, the tool breakage detection method using multi-sensors is proposed and the sensor fusion algorithm is developed to integrate and make decisions from data measured through the multisensors. Also, the performances of this scheme are compared and evaluated with real cutting process.  相似文献   

13.
In unmanned CNC turning operations, the accuracy of tool wear predictions is very important for accurate tool replacement policies and avoiding unnecessary tool insert changes. This paper introduces two new parameters, namely the total energy and the total entropy of force signals, for tool condition monitoring. The correlation between the new parameters, tool wear and a wide range of cutting conditions is examined. The experimental results show that the energy of force signal can be reliably used to monitor tool flank and crater wear over a wide range of cutting conditions. However, the total entropy of forces does not appear to be sensitive to feed rate, rake angle and tool wear. The experimental results also indicate that crater wear causes an increase in the effective rake angle resulting in lower total energy of forces. For some particular shapes of worn tool, however, the crater wear results in a decreased rake angle which increases the total energy of forces. The influence of crater wear on forces and the root mean square of acoustic emission (AErms) signals is also observed in this research.  相似文献   

14.
A multi-sensor monitoring strategy for detecting tool failure during the milling process is presented. In this strategy, both cutting forces and acoustic emission signals are used to monitor the tool condition. A feature extracting algorithm is developed based on a first order auto-regressive (AR) model for the cutting force signals. This AR(1) model is obtained by using average tooth period and revolution difference methods. Acoustic emission (AE) monitoring indices are developed and used in determining the setting threshold level on-line. This approach was beneficial in minimizing false alarms due to tool runout, cutting transients and variations of cutting conditions. The proposed monitoring system has been verified experimentally by end milling Inconel 718 with whisker reinforced ceramic tools at spindle speeds up to 3000 rpm.  相似文献   

15.
As grinding process usually is a final step of a machining procedure, excessive grinding tool wear could deteriorate both workpiece surface quality and its dimensional accuracy. This becomes more severe in the case of microgrinding than in conventional grinding because microgrinding wheels are more sensitive to tool wear. An effective tool wear monitoring technique is, therefore, crucial for maintaining consistent machining quality and high efficiency in microgrinding. In this paper, the influence of tool wear and tool stiffness on microgrinding process signals such as grinding force, grinding system vibration, acoustic emission signal and spindle load, are analyzed during end grinding of ceramic materials. To indicate the actual wear status of a microgrinding wheel, this study proposed a new monitoring parameter by fusing grinding force and system vibration signals, based on the concept of varying cutting stiffness. This new monitoring parameter is then experimentally tested in microgrinding a series of ceramic miniature features with consistent and inconsistent geometry.  相似文献   

16.
The state of a cutting tool is an important factor in any metal cutting process as additional costs in terms of scrapped components, machine tool breakage and unscheduled downtime result from worn tool usage. Several methods to develop monitoring devices for observing the wear levels on the cutting tool on-line while engaged in cutting have been attempted. This paper presents a review of some of the methods that have been employed in tool condition monitoring. Particular attention is paid to the manner in which sensor signals from the cutting process have been harnessed and used in the development of tool condition monitoring systems (TCMSs).  相似文献   

17.
提出了基于切削声信号的刀具破损监测方法。通过对破损声信号进行小波分析,提取出了与刀具破损具有相应关系的特征频带,去除了冲击声信号、刀具切入声信号等与刀具破损具有相似特征的声信号干扰,通过设定合适的阈值,能够较好地监测刀具的破损。这种监测方法为刀具的破损监测提供了一种新的途径。  相似文献   

18.
为了解决复杂多工况下刀具磨损状态的监测问题,提出一种基于深度学习的刀具磨损状态监测方法,并构建敏感特征值提取函数.基于刀具磨损数据集,建立多种工况下刀具磨损状态的监测模型,进行多工况下刀具磨损状态监测研究.研究结果表明:当敏感值界限设置为0.3时,从声发射、振动和电流信号的特征值中可以提取出56个敏感特征值;以均方根误...  相似文献   

19.
Among many machining condition monitoring systems, a spindle motor power monitoring system is considered as one of the most popular systems for plant floor applications. However, in practice, power signals are mixed with many signal sources relevant to cutting tool, cutting conditions as well as components of a machine tool, which contaminate with each other in feature extraction processes and decrease the monitoring reliability. In this paper, modified blind sources separation (BSS) technique is used to separate those source signals in milling process. A single-channel BSS method based on wavelet transform and independent component analysis (ICA) is developed, and source signals related to a milling cutter and spindle are separated from a single-channel power signal. The experiments with different tool conditions illustrate that the separation strategy is robust and promising for cutting process monitoring.  相似文献   

20.
In the paper, a new method of tool wear detection with cutting conditions and detected signals is presented, which includes the model of wavelet fuzzy neural network with acoustic emission (AE) and the model of fuzzy classification with motor current. The results of tool wear estimated by cutting conditions and detected signals (spindle motor current, feed motor current and AE) are fused by fuzzy inference. Experimental results show that the method of tool wear detection is reliable and practical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号