首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, an effective method for the form error prediction in side wall machining with a flat end mill is suggested. The form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. The developed model can predict the surface form error accurately about 300 times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.  相似文献   

2.
  总被引:6,自引:2,他引:4  
Milling is one of the most common manufacturing processes in industry. Despite recent advances in machining technology, productivity in milling is usually reduced due to the process limitations such as high cutting forces and stability. If milling conditions are not selected properly, the process may result in violations of machine limitations and part quality, or reduced productivity. The usual practice in machining operations is to use experience-based selection of cutting parameters which may not yield optimum conditions. In this two-part paper, milling force, part and tool deflection, form error and stability models are presented. These methods can be used to check the process constraints as well as optimal selection of the cutting conditions for high performance milling. The use of the models in optimizing the process variables such as feed, depth of cut and spindle speed are demonstrated by simulations and experiments.  相似文献   

3.
Chip thickness calculation has a key important effect on the prediction accuracy of accompanied cutting forces in milling process. This paper presents a mechanistic method for estimating cutting force in ball-end milling of sculptured surfaces for any cases of toolpaths and varying feedrate by incorporation into a new chip thickness model. Based on the given cutter location path and feedrate scheduling strategy, the trace modeling of the cutting edge used to determine the undeformed chip area is resulted from the relative part-tool motion in milling. Issues, such as the selection of the tooth tip and the computation of the preceding cutting path for the tooth tip, are also discussed in detail to ensure the accuracy of chip thickness calculation. Under different chip thicknesses cutting coefficients are regressed with good agreements to calibrated values. Validation tests are carried out on a sculptured surface with curved toolpaths under practical cutting conditions. Comparisons of simulated and experimental results show the effectiveness of the proposed method.  相似文献   

4.
Glass milling is discussed with influences of tool inclination on brittle fracture. Cutting tests are performed to observe surfaces in the up-cut and the down-cut processes with a ball end mill inclined in the feed direction of the cutter. Brittle fracture occurs in the down-cut process at high feed rates. Then the machined surfaces in cutting with the ball end mills tilted in the vertical plane with respect to the feed direction are associated with those of the up-cut and the down-cut processes. The cutting forces are also measured to discuss brittle fracture with the change of the undeformed chip thickness. The scratches on the surface finished with the tilted ball end mill are shown in an analytical model with a notched edge shape. The maximum feed rates at which brittle fracture does not occur are shown with the tool inclination in the cutting tests.  相似文献   

5.
    
The aim of the present research work has been to gain a broader understanding of how or why laser assisted machining (LAM) improves machinability of Inconel 718, a hard-to-machine material of interest in the aeronautic industry. This has been accomplished by, first, running short run tests to determine the laser parameters and configuration for which highest force reductions are obtained and also to determine the effect of cutting parameters (feed, cutting speed and depth of cut) on force reduction. Secondly, long run tests have been performed in order to analyze process variables such as cutting forces, tool wear and surface roughness. Temperatures and hardness have been also measured in order to gain a broader perspective of the process.Experimental results have demonstrated that LAM improves machinability of Inconel 718 since machining forces and final surface roughness are reduced. The novelty reached with the present research work is the identification of three mechanisms associated to the laser heating as the responsible of this machinability improvement: material yield strength reduction, material base hardness reduction (only in precipitation hardened Inconel 718) and elimination of the work hardening generated in previous machining passes. The reduction of the work hardening leads also to a lower notch wear that limits the risk of sudden failure of the cutting tool and thus the wear mode is changed to flank wear, which leads to a controllable tool life and better surface roughness.  相似文献   

6.
  总被引:2,自引:0,他引:2  
A variety of helical end mill geometry is used in the industry. Helical cylindrical, helical ball, taper helical ball, bull nosed and special purpose end mills are widely used in aerospace, automotive and die machining industry. While the geometry of each cutter may be different, the mechanics and dynamics of the milling process at each cutting edge point are common. This paper presents a generalized mathematical model of most helical end mills used in the industry. The end mill geometry is modeled by helical flutes wrapped around a parametric envelope. The coordinates of a cutting edge point along the parametric helical flute are mathematically expressed. The chip thickness at each cutting point is evaluated by using the true kinematics of milling including the structural vibrations of both cutter and workpiece. By integrating the process along each cutting edge, which is in contact with the workpiece, the cutting forces, vibrations, dimensional surface finish and chatter stability lobes for an arbitrary end mill can be predicted. The predicted and measured cutting forces, surface roughness and stability lobes for ball, helical tapered ball, and bull nosed end mills are provided to illustrate the viability of the proposed generalized end mill analysis.  相似文献   

7.
  总被引:1,自引:0,他引:1  
The effects of tool edge geometry in machining have received much attention in recent years due to a variety of emerging machining techniques, such as finish hard turning and micro-machining. In these techniques, the uncut chip thickness is often on the same order of magnitude as tool edge dimension. This paper presents and analyses the results of our recent experimental and theoretical study on the effects of tool edge geometry in machining. Both chamfered and honed tools are investigated covering a wide range of cutting speed and feed rate conditions. The three aluminum alloys 7075-T6, 6061-T6, and 2024-T351 are selected as work materials for particular research purposes. The cutting force, the thrust force, the ratio of the cutting force to the thrust force, and the chip thickness are measured. The similarities and differences in machining with a chamfered tool and with a honed tool are compared. A new slip-line model of chip formation for machining with a chamfered tool is proposed. Good agreement has been reached between the predicted and experimental results. The effects of different aluminum alloys and cutting speeds on the cutting forces, especially on the thrust force, are also studied.  相似文献   

8.
  总被引:5,自引:2,他引:3  
Plane surface generation mechanism in flat end milling is studied in this research. The bottom of a flat end mill has an end cutting edge angle that plays an important role in surface texture. Surface texture is produced by superposition of conical surfaces generated by the end cutting edge rotation. The machined surface is cut once again by the trailing cutting edge. This back cutting phenomenon is frequently observed on surfaces after finishing. Tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotation center are considered together with tool deflection caused by cutting forces. Tool deflection affects magnitude of back cutting and the surface form accuracy. As a result, the finished surface possesses peaks and valleys with form waviness. Surface topography parameters such as RMS deviation, skewness and kurtosis are used for evaluating the generated surface texture characteristics. Through a set of cutting tests, it is confirmed that the presented model predicts the surface texture and roughness parameters precisely including back cutting effect.  相似文献   

9.
Cutting process of glass with inclined ball end mill   总被引:3,自引:0,他引:3  
Cutting processes with ball end mills are discussed for machining microgrooves on glasses. A surface is finished in undeformed chip thickness less than 1 μm at the beginning and at the end of the cut during the cutter rotation. The milling process is applied to glass machining. A crack-free surface can be finished in a large axial depth of cut more than 10 μm. Because glass undergoes almost no elastic deformation, roughness on a cutting edge in glass machining has a larger influence on surface finish than that of metal machining. The rotational axis of the tool is inclined to improve the surface finish. The cutting processes are modeled to show the effect of the tool inclination on the machined surface with considering the edge roughness. The tool inclination compensates for deterioration of the surface finish induced by the edge roughness in the presented model. The improvement of the surface finish is verified in the cutting experiments with the tool inclination. The orthogonal grooves 15–20 μm deep and 150–175 μm wide, then, are machined with the crack-free surfaces to prove efficiency and surface quality in the milling process.  相似文献   

10.
主要讲述了切削液在北方红旗立式加工中心加工过程中的应用及对比试验,以提高刀具耐用度。  相似文献   

11.
Modeling of cutting forces in near dry machining under tool wear effect   总被引:1,自引:0,他引:1  
A predictive model for the cutting forces in near dry machining, in which only a small amount of cutting fluid is used, is developed based on considerations of both the lubricating effect and the cooling effect. For the lubricating effect, with the material properties, lubricating parameters, and cutting conditions, the friction coefficient in near dry machining is calculated based on the boundary lubrication model for use in a modified Oxley's approach to determine the cutting forces. For the cooling effect in near dry machining, a moving heat source method is pursued to quantify the primary-zone shear deformation heating, the secondary-zone friction heating, and flank face air–oil mixture cooling. These two effects are considered collectively to estimate cutting forces under the condition of sharp tools. The predicted variables of flow stress, contact length, and shear angle obtained from the model are used to predict the cutting forces due to the tool flank wear effect based on Waldorf's model. Comparisons are made between predicted and experimental cutting forces for sharp tools and worn tools in the cutting of AISI 1045 with uncoated carbide tools. The results show that the proposed model provides average prediction errors of 14% in the tangential cutting force direction, 21% in the axial directions, and 30% in the radial directions within the experimental test condition range (cutting speeds of 45.75–137.25 m/min, feeds 0.0508–0.1016 mm/rev, and depth of cuts 0.508–1.016 mm). It is also found that the cutting forces in near dry machining are generally lower than those under dry machining condition. Under cutting speeds of 91.5 and 137.25 m/min, the deviations of the predicted forces between near dry machining and dry machining range from 5% to 39% for axial cutting forces, 3% to 36% for radial cutting forces, and 1% to 32% for tangential cutting forces. It suggests that the lubricating mechanism has a stronger effect on cutting forces than the cooling mechanism when cutting AISI 1045 with uncoated carbide tools.  相似文献   

12.
  总被引:2,自引:0,他引:2  
Machine tool deflections due to cutting forces can result in dimensional errors on workpieces. The problem is most severe when flexible tools such as end mills are used. When dimensioned features are specified with tolerances, process planning should examine the compromise between achieving high productivity rates and meeting dimensions within the specified tolerances. The use of geometric dimensioning and tolerancing permits interaction between size and position and makes bonus tolerances available. The errors occurring in end milling are first examined and modelled using regression methods. A procedure is proposed for selecting optimal feed rates that ensure that tolerances can be met. The process is demonstrated in machining a slot using the down milling mode. The use of a tolerance analysis chart clarifies the results of the test in relation to the tolerance standards. The need to consider the transient errors at the exit of the cut is demonstrated.  相似文献   

13.
    
Machining of titanium at high cutting speeds such as from 4 m/s to 8 m/s is very challenging. In this paper, a new generation of driven rotary lathe tool was developed for high-speed machining of a titanium alloy, Ti–6Al–4V. The rotary tool was designed and fabricated based on the requirements of compact structure, sufficient stiffness and minimal edge runout. Cylindrical turning experiments were conducted using the driven rotary tool (DRT) and a stationary cutting tool with the same insert, for comparison in the high-speed machining of Ti–6Al–4V. The results showed that the DRT can significantly increase tool life. Increase in tool life of more than 60 times was achieved under certain conditions. The effects of the rotational speed of the insert were also investigated experimentally. Cutting forces were found to decline slightly with increase of the rotational speed. Tool wear appears to increase with the rotational speed in a certain speed range.  相似文献   

14.
  总被引:1,自引:0,他引:1  
Based on experimental results, performed on an instrumented single wire saw, an analytical model for the macroscopic mechanical conditions in the wire sawing process is presented. The model describes the influence of important process parameters like wire velocity, feed velocity and tension force as well as geometric relations like ingot size and wire length to the lapping pressure and the shape of the formed wire bow. The model is based on macroscopic, measurable, machining parameters and uses the experimentally determined relation between pressure and removal rate according to Prestons law. The derived equations are used to study the influence of typical process parameters systematically and the results are exemplified for the production line of 6 in solar wafers.  相似文献   

15.
Micro mechanical machining operations can fabricate miniaturized components from a wide range of engineering materials; however, there are several challenges during the operations that can cause dimensional inaccuracies and low productivity. In order to select optimal machining parameters, the material removal behavior during micro machining operations needs to be understood and implemented in models. The presence of the tool edge radius in micro machining, which is comparable in size to the uncut chip thickness, introduces a minimum uncut chip thickness (MUCT) under which the material is not removed but ploughed, resulting in increased machining forces that affect the surface integrity of the workpiece. This paper investigates the MUCT of rounded-edge tools. Analytical models based on identifying the stagnant point of the workpiece material during the machining have been proposed. Based on the models, the MUCT is found to be functions of the edge radius and friction coefficient, which is dependent on the tool geometry and properties of the workpiece material. The necessary parameters for the model are obtained experimentally from orthogonal cutting tests using a rounded-edge tool. The minimum uncut chip thickness (MUCT) is then verified with experimental tests using an aluminum workpiece.  相似文献   

16.
The state of a cutting tool is an important factor in any metal cutting process as additional costs in terms of scrapped components, machine tool breakage and unscheduled downtime result from worn tool usage. Several methods to develop monitoring devices for observing the wear levels on the cutting tool on-line while engaged in cutting have been attempted. This paper presents a review of some of the methods that have been employed in tool condition monitoring. Particular attention is paid to the manner in which sensor signals from the cutting process have been harnessed and used in the development of tool condition monitoring systems (TCMSs).  相似文献   

17.
  总被引:8,自引:0,他引:8  
This paper deals with the comparison of measured and calculated results of cutting force components and temperature variation generated on the tool tip in turning for different cutting parameters and different tools having various tool geometries while machining AISI 1040 steel hardened at HRc 40. The geometric variables (approaching angle and rake angle) of the tool were changed using selected cutting parameters; thus, the cutting force components and temperature variations on tool face (in secondary shear zone) were determined. The selected cutting variables and the tools in different geometries were tested practically under workshop conditions. In this way, the essential information about the validity of selected values was obtained. During the tests, the depth of cut and cutting speed were kept constant and each test was conducted with a sharp uncoated tool insert. For making a comparison, the main cutting force/tangential force component for different cutting parameters and tool geometries were calculated by Kienzle approach and the temperature values were calculated based on orthogonal cutting mechanism. Finally, the effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analysed. The average deviation between measured and calculated force results were found as 0.37%. The cutting force signals and temperature values provided extensive data to analyse the orthogonal cutting process.  相似文献   

18.
  总被引:1,自引:0,他引:1  
The condition of broaching tools has crucial importance for the surface quality of the machined components. If undetected, tool malfunctions such as wear, chipping and breakage of cutting teeth can result in severe damage or even scrapping expensive components, with direct implications on increasing the overall manufacturing costs. In contrast with other machining operations, broaching is characterised by non-symmetric distributions of cutting forces vs. time, making more difficult the task of recognising tool malfunctions. The paper reports on a methodology to automatically detect and classify tool malfunctions in broaching. The method was demonstrated through the use of time domain distribution of the push-off cutting force as a key sensory signal to monitor broaching tool condition when machining a nickel-based aerospace alloy. The characteristic features of the sensory signals have been extracted using in-house-developed programs and, afterwards, used to train and test a probabilistic neural network that enables automated classification of tools with fresh, worn, chipped and broken teeth. Inputting new pattern characteristics to the main categories of tool malfunctions, the system successfully classified them even when variations of signal amplitude and ranking of malfunctioned teeth occurred.  相似文献   

19.
    
Tools deflection that occurs during machining, and especially when flexible tools such as end mills are used, can result in dimensional errors on workpieces. The study presented here is part one of a two-part paper: it deals with the estimation of cutting forces and the prediction of milled surface. The second part will focus on a methodology that allows to optimize the production rate by compensating the deflection and meeting the part tolerance.Cutting force models have been and are still the subject of a lot of research. The model used is based on Kline and Devor's [5]: a polynomial approximation whose coefficients are obtained by least square methodology is used for the calculation of cutting forces. The machined surface (two axis machining) is determined using the contact point methodology and some experimental tests are done to validate the models.  相似文献   

20.
This paper presents a method to analyze the 3-dimensional form error of a ball-end milled surface due to the elastic compliance of the cutting tool. In order to estimate the form error in various cutting modes, the cutting force and the cutter deflection models including the effect of the surface inclination were established. The cutting forces were calculated by using the cutter contact area determined from the Z-map of the surface geometry and the current cutter location. The tool deflection responding to the cutting force was then calculated by considering the cutter and the holder stiffness. The cutter was modeled as a cantilever beam consisting of the shank and the flute. The stiffness of the holder was measured experimentally. Various experimental works have been performed to verify the validity of the proposed model. It is shown that the proposed method is capable of accurate prediction of cutting forces and the surface form error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号