首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Capillary zone electrophoresis with electrochemical detection   总被引:3,自引:0,他引:3  
  相似文献   

2.
Capillary zone electrophoresis (CZE) in nonaqueous media and in the presence of ionic additives has been successfully applied to the determination of compounds that differ only slightly in their electrophoretic mobilities. Triazine herbicides of environmental interest were chosen as test compounds because they behave as very weak bases. CZE separation of these analytes (especially chlorotriazines) in aqueous solution is difficult due to the low pH required for their conversion into protonated cationic form (HA(+)). However, in mixed nonaqueous solvents, 50% (v/v) acetonitrile-methanol, the acid-base characteristics of these compounds are modified, yielding the protonated ionic species that is susceptible to migration when subjected to an electric field. A noteworthy increase in separation selectivity and resolution can be achieved by using ionic additives. Thus, in this mode of capillary zone electrophoresis, separation is based on ionic interactions between the charged analytes and the ionic additive present in the separation medium. These interactions contribute to enhancing mobility differences and to improving analyte separation. For the separation of chloro- and methylthiotriazines, 10 mM perchloric acid in 50% (v/v) acetonitrile-methanol and 20 mM SDS proved to be satisfactory, providing high resolution in short analysis times. The selectivity achieved was found to depend on the degree of association of the analyte with the ionic additive in the nonaqueous medium. This permits manipulation of the selectivity of the electrophoretic separations as a function of the type and concentration of the ionic additive and of the nature of the nonaqueous medium employed.  相似文献   

3.
4.
5.
6.
7.
Association constants, Kc, were derived from the electrophoretic mobilities of the anionic solutes (seven benzoates with hydroxy or chloro substituents) by capillary zone electrophoresis in different solvent systems, consisting of binary mixtures of water with up to 20% (v/v) methanol or acetonitrile, respectively. The association constants expectedly are found to decrease with increasing organic solvent concentration. The effect of organic solvents on the Kc of the benzoates with beta-cyclodextrin was analyzed applying the concept of the transfer activity coefficient (or the medium effect). This concept enables the evaluation of the significance of the contributions of the individual species involved in the complexation equilibrium in the different solvents: the benzoate ion, beta-cyclodextrin, and the anionic benzoate-beta-cyclodextrin complex. The medium effect on benzoate was calculated from the change in acidity constant of benzoic acid in the different mixed solvents and the corresponding transfer activity coefficients of the proton and the molecular acid. The transfer activity coefficients for beta-cyclodextrin results from its solubility at saturation in the different solvents. In this way, an estimation of the standard free energy of transfer, deltaG(t)0, of each species involved in the complexation equilibrium was possible for the transfer from water into the respective mixed solvent. It was found that the organic solvents do not significantly affect deltaG(t)0 for the benzoate anion. However, the organic solvents play a different role concerning the stabilization of beta-cyclodextrin and the complex anion: whereas the addition of acetonitrile has nearly no influence on deltaG(t)0 of the anionic complex, the reduction in Kc is caused by the enhanced stabilization of beta-cyclodextrin (reflected by its better solubility). Addition of methanol, on the other hand, lowers the solubility of beta-cyclodextrin, thus giving positive values for deltaG(t)0. Thus, the overall effect on Kc in methanolic solutions must be related to the pronounced destabilization of the benzoate-beta-cyclodextrin complex.  相似文献   

8.
Capillary electrophoresis for the analysis of biopolymers   总被引:5,自引:0,他引:5  
Hu S  Dovichi NJ 《Analytical chemistry》2002,74(12):2833-2850
  相似文献   

9.
10.
Capillary electrophoresis for the analysis of biopolymers   总被引:3,自引:0,他引:3  
  相似文献   

11.
Capillary gel affinity electrophoresis of DNA fragments.   总被引:3,自引:0,他引:3  
A Guttman  N Cooke 《Analytical chemistry》1991,63(18):2038-2042
The incorporation of an affinity ligand within a polyacrylamide gel provides a general means of manipulating the selectivity of capillary gel electrophoresis separations. As an example of this approach, high resolution of DNA restriction fragments by capillary gel affinity electrophoresis has been achieved by adding a soluble intercalating agent, ethidium bromide, to the gel-buffer system. A migration model has been developed that can be used for selectivity optimization. Various parameters, such as ligand concentration and applied electric field, have been examined in terms of their influence on retention and selectivity of different-size DNA molecules. From this study, high-resolution separations have been developed with efficiencies as high as 10(7) theoretical plates per meter.  相似文献   

12.
3-(4-Carboxybenzoyl)-2-quinolinecarboxaldehyde has been utilized as a precolumn derivatization agent for various amino sugars. Constituents of various biological mixtures can be converted to highly fluorescent isoindole derivatives, separated by high-performance capillary electrophoresis and determined at attomole (10(-18) mol) levels by a laser-induced fluorescence detector. This method has been applied to the analysis of monosaccharides and acid-hydrolyzed polysaccharides. Carbohydrate moieties derived from a glycoprotein were also tagged and determined.  相似文献   

13.
The dynamics of focusing weak bases using a transient pH boundary was examined via high-resolution computer simulation software. Emphasis was placed on the mechanism and impact that the presence of salt, namely, NaCl, has on the ability to focus weak bases. A series of weak bases with mobilities ranging from 5 x 10(-9) to 30 x 10(-9) m2/V x s and pKa values between 3.0 and 7.5 were examined using a combination of 65.6 mM formic acid, pH 2.85, for the separation electrolyte, and 65.6 mM formic acid, pH 8.60, for the sample matrix. Simulation data show that it is possible to focus weak bases with a pKa value similar to that of the separation electrolyte, but it is restricted to weak bases having an electrophoretic mobility of 20 x 10(-9) m2/V x s or quicker. This mobility range can be extended by the addition of NaCl, with 50 mM NaCl allowing stacking of weak bases down to a mobility of 15 x 10(-9) m2/V x s and 100 mM extending the range to 10 x 10(-9) m2/V x s. The addition of NaCl does not adversely influence focusing of more mobile bases, but does prolong the existence of the transient pH boundary. This allows analytes to migrate extensively through the capillary as a single focused band around the transient pH boundary until the boundary is dissipated. This reduces the length of capillary that is available for separation and, in extreme cases, causes multiple analytes to be detected as a single highly efficient peak.  相似文献   

14.
Nonaqueous capillary zone electrophoresis of synthetic organic polypeptides   总被引:1,自引:0,他引:1  
Poly(Nepsilon-trifluoroacetyl-L-lysine) was used as a model solute to investigate the potential of nonaqueous capillary electrophoresis (NACE) for the characterization of synthetic organic polymers. The information obtained by NACE was compared to that derived from size exclusion chromatography (SEC) experiments, and the two techniques were found to be complimentary for polymer characterization. On one hand, NACE permitted (i) the separation of oligomers according to their molar mass and (ii) the separation of the polymers according to the nature of the end groups. On the other hand, SEC experiments were used for the characterization of the molar mass distribution for higher molar masses. Due to the tendency of the solutes (polypeptides) to adsorb onto the fused-silica capillary wall, careful attention was paid to the rinsing procedure of the capillary between runs in order to keep the capillary surface clean. For that purpose, the use of electrophoretic desorption under denaturating conditions was very effective. Optimization of the separation was performed by studying (i) the influence of the proportion of methanol in a methanoVacetonitrile mixture and (ii) the influence of acetic acid concentration in the background electrolyte. Highly resolved separation of the oligomers (up to a degree of polymerization n of approximately 50) was obtained by adding trifluoroacetic acid to the electrolyte. Important information concerning the polymer conformations could be obtained from the mobility data. Two different plots relating the effective mobility data to the degree of polymerization were proposed for monitoring the changes in polymer conformations as a function of the number of monomers.  相似文献   

15.
A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.  相似文献   

16.
We experimentally demonstrate a nearly wavelength-independent optical reflection from an extremely rough carbon nanotube sample. The sample is made of a vertically aligned nanotube array, is a super dark material, and exhibits a near-perfect blackbody emission at T=450 K-600 K. No other material exhibits such optical properties, i.e., ultralow reflectance accompanied by a lack of wavelength scaling behavior. This observation is a result of the lowest ever measured reflectance (R=0.0003) of the sample over a broad infrared wavelength of 3 μm < λ < 13 μm. This discovery may be attributed to the unique interlocking surface of the nanotube array, consisting of both a global, large scale and a short-range randomness.  相似文献   

17.
18.
Protocol for resolving protein mixtures in capillary zone electrophoresis.   总被引:2,自引:0,他引:2  
The separation of protein mixtures by capillary zone electrophoresis can be plagued by wall adsorption of the protein components, causing peak broadening and distortion. A method is presented for overcoming this problem by adding ethylene glycol to the protein sample and by choosing the running buffer and protein sample to be at different pH values and molarities. This protocol appears to work for a wide class of proteins having different molecular weights and pI values. The method has been applied to the analysis of proteins in human serum. Compared to the traditional method of agarose gel electrophoresis, the present method is more rapid and offers better resolution, suggesting its potential as a clinical diagnostic of certain disease states.  相似文献   

19.
This paper demonstrates the ability to use capillary electrophoresis (CE) separation coupled with laser-induced fluorescence for analyzing the contents of single femtoliter-volume aqueous droplets. A single droplet was formed using a T-channel (3 microm wide by 3 microm tall) connected to microinjectors, and then the droplet was fluidically moved to an immiscible boundary that isolates the CE channel (50 microm wide by 50 microm tall) from the droplet generation region. Fusion of the aqueous droplet with the immiscible boundary effectively injects the droplet content into the separation channel. In addition to injecting the contents of droplets, we found aqueous samples can be introduced directly into the separation channel by reversibly penetrating and resealing the immiscible partition. Because droplet generation in channels requires hydrophobic surfaces, we have also investigated the advantages to using all hydrophobic channels versus channel systems with patterned hydrophobic and hydrophilic regions. To fabricate devices with patterned surface chemistry, we have developed a simple strategy based on differential wetting to deposit selectively a hydrophilic polymer (poly(styrenesulfonate)) onto desired regions of the microfluidic chip. Finally, we applied our device to the separation of a simple mixture of fluorescein-labeled amino acids contained within a approximately 10-fL droplet.  相似文献   

20.
Fang X  Gong F  Fang Y 《Analytical chemistry》1998,70(19):4030-4035
The enantiomers of two amine derivatives were directly separated by capillary electrophoresis (CE), employing β-cyclodxtrin (β-CD) as a chiral additive in strongly alkaline solutions. The analytes were detected by electrochemistry, using a copper disk electrode at +675 mV vs Ag/AgCl reference electrode. Both the free enantiomers and the enantiomer-cyclodxtrin inclusion complexes could be detected using this approach, although the complexed forms gave lower oxidation currents than the free forms. Factors affecting the chiral CE separation of the analytes, such as working potential, concentration of running buffer and β-CD, and applied voltage, were extensively investigated. Under the optimum conditions, baseline separation of the enantiomers could be accomplished in less than 18 min. In addition, a successful application of the method to the enantiomeric purity determination confirmed its validity and practicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号