首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
We demonstrate a broad-band silica-based erbium-doped fiber amplifier (EDFA) with double-pass configuration. The signal gain and noise figure are obtained more than 24 dB and less than 6 dB, respectively, for 1526-1562 nm and 1569-1605 nm. The same signal gain can be achieved with 53% less pump power and 45% shorter erbium-doped fiber length, compared to a conventional parallel type EDFA. Furthermore, the noise figure and power conversion efficiency are improved for the wavelength range  相似文献   

2.
Tm-doped fiber amplifiers for 1470-nm-band WDM signals   总被引:4,自引:0,他引:4  
We describe the gain characteristics of thulium-doped fiber amplifiers (TDFA) for wavelength division multiplexing (WDM) signals. We optimized the TDF length and the ratio between the forward and backward pump power to realize efficient amplification. The TDFA achieved a gain of over 20 dB and a noise figure of less than 6 dB in the 1353-1483 nm wavelength region at a total pump power of 300 mW for WDM signals input at a total power of -7 dBm.  相似文献   

3.
The effect of pump wavelength around 1480 nm on the performance of saturated erbium-doped fiber amplifiers (EDFAs) suitable for use as in-line amplifiers for terrestrial and submarine systems is investigated experimentally. The results show that for high-gain amplifiers (25 dB) with high output powers (15 dBm), operating around 10 dB in compression, the performance is relatively insensitive to pump wavelength. However, for lower gain amplifiers (12 dB), pumped at low (15 mW) powers, the compression of the amplifier is found to decrease significantly with increasing pump wavelength, while the noise figure shows a weak minimum for a pump wavelength near 1480 nm  相似文献   

4.
Mori  A. Ono  H. Shikano  K. Shimizu  M. 《Electronics letters》2002,38(23):1419-1420
The amplification characteristics of an Er/sup 3+/-doped tellurite-based fibre amplifier (EDTFA) with 980 nm band pumping are described. The optimum pump wavelength and length of the newly developed EDTF are investigated in order to obtain both a low noise figure and a high gain simultaneously. We realise a low noise figure of less than 4.5 dB with a pump wavelength of 976.5 nm and a 0.4 m EDTF.  相似文献   

5.
We present an efficient temperature-dependent analysis to study the effect of cooperative upconversion on the temperature-dependent gain (TDG) performance of the C-band erbium-doped fiber amplifier (EDFA) at high-concentration. The influence of cooperative upconversion on the TDG is examined by using a set of temperature-dependent rate and light propagation equations. In the analysis given, the amplified spontaneous emission (ASE), as well as the excited state absorption (ESA) are also considered. In the forward pumping configuration at a signal wavelength of 1547 nm and in the temperature range of - 40degC to + 80degC, the variations of the TDG and the noise figure (NF) are about 1.7 and 0.9 dB, respectively. Numerical analysis results show that, with 260-mW/1480-nm pump power, an erbium-doped fiber amplifier having a doping concentration of 4.4 times 1026 ion/m3 and optimum length of 9.2 cm may reach a signal gain of 44.6 dB and a noise figure of 3.9 dB at room temperature.  相似文献   

6.
The performance of a long wavelength‐band erbium‐doped fiber amplifier (L‐band EDFA) using 1530nm‐band pumping has been studied. A 1530nm‐band pump source is built using a tunable light source and two C‐band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L‐band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L‐band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm‐band pump. The L‐band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of –10dBm/ch. These results demonstrate that 1530nm‐band pump can be used as a new efficient pump source for L‐band EDFAs.  相似文献   

7.
提出了一种改善反射式L波段掺铒光纤放大器增益和噪声指数的方法,即在放大器的输入端插入一泵浦源,通过提高信号输入端的粒子数反转率实现提高增益和降低噪声指数的目的.通过仔细调整两个泵浦源的输出功率,与单泵浦结构相比,在相同条件下,在1565~1615 nm波长范围内,小信号增益提高了1.5~9.9 dB,噪声指数下降了1.3~9.4 dB.  相似文献   

8.
采用两段级联掺铒光纤、980nm和1480nmLD混合泵浦方式,实验分析比较了内插光隔离器和内插光隔离-耦合环光路结构掺铒光纤放大器(EDFA)的增益、噪声系数和输出功率特性。研制出内插光隔离-耦合环的EDFA,在信号波长1553.5nm处,小信号增益为42.8dB,噪声系数为4.4dB,输出功率为15.2dBm。  相似文献   

9.
A new double-pass long wavelength band erbium-doped fiber amplifier with enhanced noise figure characteristics is demonstrated by adding a short length of forward pumped erbium-doped fiber (EDF) in front of a double-pass amplifier. Compared with the conventional double-pass amplifier, the new amplifier provides noise figure improvement of about 0.8 to 6.0 dB over the flat-gain region from 1568 to 1600 nm. Since the optical circulator prevents the amplified signal and backward amplified spontaneous emission from propagating into the EDF, the population inversion of the input part of the amplifier is hardly affected by the intense lights, therefore, the noise figure could be kept low. The new double-pass system has achieved a flat-gain output at about 33.5 dB, which is 13.5 dB higher than that of the single-pass system with gain variation less than 1.3 dB at the flat-gain region. The noise figure varies from 5.9 to 6.6 dB in this region.  相似文献   

10.
This paper describes our design of a hybrid amplifier composed of a distributed Raman amplifier and erbium‐doped fiber amplifiers for C‐ and L‐bands. We characterize the distributed Raman amplifier by numerical simulation based on the experimentally measured Raman gain coefficient of an ordinary single mode fiber transmission line. In single channel amplification, the crosstalk caused by double Rayleigh scattering was independent of signal input power and simply given as a function of the Raman gain. The double Rayleigh scattering induced power penalty was less than 0.1 dB after 1000 km if the on‐off Raman gain was below 21 dB. For multiple channel amplification, using commercially available pump laser diodes and fiber components, we determined and optimized the conditions of three‐wavelength Raman pumping for an amplification bandwidth of 32 nm for C‐band and 34 nm for L‐band. After analyzing the conventional erbium‐doped fiber amplifier analysis in C‐band, we estimated the performance of the hybrid amplifier for long haul optical transmission. Compared with erbium‐doped fiber amplifiers, the optical signal‐to‐noise ratio was calculated to be higher by more than 3 dB in the optical link using the designed hybrid amplifier.  相似文献   

11.
We have made an experimental and theoretical study of the noise figure of an erbium doped fiber amplifier in the saturated regime. The saturated amplified spontaneous emission at the signal wavelength was measured using a very accurate pulsed source technique. We have quantified the noise figure dependence on compression, in excellent agreement with theory, to be less than 1.5 dB for a gain compression as high as 15 dB when the small signal gain was 26 dB, and the 1.48 μm pump power was 27 mW  相似文献   

12.
The authors describe the first experimental study of an erbium-doped multimode fiber amplifier. The focus has been to characterize an intermediate core erbium-doped optical fiber, a fiber that is capable of propagating many guided modes at both the signal and pump wavelengths, and to determine the feasibility of using such an active fiber as a multimode fiber amplifier, by measuring its gain, noise, and pump power requirements. For a 2-m length of a 13-μm-core erbium-doped fiber, the authors measured gain as high as 16 dB at a signal wavelength of 1543 nm, with approximately 100 mW pump power (980 nm). For these same test conditions, the smallest excess noise factor β was 42  相似文献   

13.
The authors propose and implement a discrete fiber Raman amplifier configured in double-pass scheme together with fiber Bragg grating (FBG)-based all-optical feedback. The double-pass amplifiers achieve more than a 30-dB net gain with affordable pump power and guarantee a large margin for gain clamping. The all-optical gain clamping is provided by the lasing wavelength inside the cavity caused by the high reflectivity FBG and wide-band reflector. A stable gain is obtained for large input signal dynamic range of 30 dB. The gain variation is kept below 0.17 dB and the noise figure is flattened at the same time. Also, the authors investigate the Raman gain and noise figure as a function of signal wavelength with the proposed gain clamping technique.  相似文献   

14.
In this paper, we investigate the effects of complex energy transfer dynamics and Gaussian profiles on the gain and noise figure performance of erbium-doped fiber amplifiers (EDFAs) with high doping concentration. We use a two-level system to study the complex energy transfer dynamics that comes from the homogeneous up-conversion (HUC) and the pair-induced quenching (PIQ). In our model, the system is stimulated by a pump source at the wavelength of 1480 nm and operated with a signal source at the wavelength of 1560 nm. Assuming a uniform distribution of erbium ions in the fiber core, we approximate the fundamental mode distributions by Gaussian profiles which are commonly used to calculate the mode radius or spot size. Using the numerical calculations and analysis of the rate and power propagation equations for a two-level model under consideration, the most advantageous Gaussian profile is determined as the Whitley mode radius to obtain a high-gain and a low-noise figure per unit length of silica-based fiber amplifiers. The effects of the number of ions per cluster and the percentage of ions in clusters on the calculated gain and noise figure are compared for several pump powers. Results are discussed to achieve a desired gain and noise figure performance, and compared with the available experimental data to verify the feasibility of the model.  相似文献   

15.
基于光纤放大器增益谱的宽带平坦化发展需要,设计了一个两段铋基掺铒光纤(Bi-EDF)级联并携带一个C波段(1 530~1 565 nm)宽带光纤布拉格光栅(FBG)的双通结构型铋基掺铒光纤放大器(Bi-EDFA),从理论上研究了其对输入信号的放大特性。研究表明:FBG的引入可以使C和L波段(1 570~1 620 nm)信号分别经历不同长度Bi-EDF的双向传输,各自获得高增益放大,实现增益谱的宽带平坦化。在200 mW的1 480 nm双向对称泵浦下,第一级和第二级Bi-EDF长度分别为50 cm和170 cm时,对于波长间隔为2 nm、每路功率为-30 dBm的56路C+L波段信号的输入,Bi-EDFA高于30 dB的增益带宽达到了90 nm(1 530~1 620 nm),平均增益为35.7 dB,增益起伏仅为2.3 dB。同时,噪声系数得到明显改善。研究结果对于研制具有宽带、增益平坦的C+L波段Bi-EDFA具有实际指导意义。  相似文献   

16.
We present results on a low-cost cladding-pumped L-band amplifier based on side pumping (GTWave) fiber technology and pumped by a single 980-nm multimode diode. We show that simultaneous noise reduction and transient suppression can be achieved by using gain clamping by a seed signal (/spl lambda/=1564 nm). In the gain-clamping regime, the amplifier exhibits 30-dB gain over 1570-1605-nm spectral band with noise figure below 7 dB. The noise figure can be further reduced to below 5 dB by utilizing a low power single-mode pump at 980 nm. The erbium-doped fiber amplifier is relatively insensitive to input signal variations with power excursions below 0.15 dB for a 10-dB channel add-drop.  相似文献   

17.
The pump wavelength dependence of the gain of an erbium-doped fiber amplifier pumped in the wavelength region 950-1000 nm is discussed. It is found that efficient gain at 1.557 μm, between 25 and 28 dB for 17 mW of launched pump power, can be obtained for any wavelength pump in the range 965-985 nm. The optimum length of erbium fiber needed is found to vary as a function of pump wavelength. The gain as a function of signal wavelength is also investigated at these pump wavelengths  相似文献   

18.
We propose a novel low noise and gain-flattened Er/sup 3+/-doped fiber amplifier (EDFA) with a cascade configuration for wavelength division multiplexing (WDM) signals. In this configuration, a 1480-nm pumped fluoride-based EDFA is joined to a 980-nm pumped silica-based EDFA through an optical isolator. By adjusting the silica-based Er/sup 3+/-doped fiber length in the silica-based EDFA, we realized an excellent flat gain EDFA with a gain excursion of less than 0.9 dB and noise figure of 5.7/spl plusmn/0.2 dB, and a low noise EDFA with a noise figure of 5/spl plusmn/0.2 dB and a gain excursion of less than 1.4 dB, for 8 channel WDM signal in the 1532-1560-nm wavelength region.  相似文献   

19.
针对宽带碲基掺铒光纤放大器(EDTFA)本征增益谱不平坦特性,研究了采用双级串连结构,并在两段光纤中间加入增益均衡滤波器来实现增益平坦.模拟结果显示,通过设计一定结构的滤波谱,在37信道同时输入的情况下,铒离子掺杂浓度为4000 ppm时,使1536~1608 nm范围带宽内的增益达到了24 dB左右,噪声指数小于5.5 dB,增益谱的不平坦度小于1 dB;铒离子掺杂浓度为6000 ppm时,使1536~1608 nm范围带宽内的增益达到了23.5 dB左右.噪声指数小于5 dB,增益谱的不平坦度小于1dB.优化后的级连EDTFA可以满足WDM系统的要求.  相似文献   

20.
To form a low noise figure and uniform shortpass band in optical fiber communications an improved automatic filtered power control (AFPC) pumping method is proposed here. A modulated single laser signal was entered in a closed feedback loop, in which the erbium-doped fiber amplifier (EDFA) was used as a part of the AFPC loop. Owing to the constant filtered signal and the quadrature phase shift delay inside the feedback loop, an optical pass band was uniformly formed. This EDFA attains high performance with a low noise figure simultaneously. The method was successfully applied to the fabrication of practical 12.0 m length of erbium-doped fiber pumped at 980 nm wavelength and 20 dBm power. Experiments prove that the signal gain of the loop remain flat in the range of 18.2 to 22.4 dB with a worst case error of ±0.5 dB and the noise figure was reduced by 2.2 dB at optimal, which correspond to a shortpass range of 40 nm band pass from 1525 nm to 1565 nm in wavelength. Of course, it should be possible to extent the system performance to all pumping configurations for semiconductor optical amplifiers. This provides the simplest and most economical way to transmit a well-defined band of modulated laser signal and to reject all other unwanted radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号