首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variation of the kinetics of the martensite transformation with carbon content and martensite habit plane has been investigated in several Fe−Ni based alloys. Transformation in an Fe-25 wt pct Ni-0.02 wt pct C alloy exhibits predominantly athermal features, but some apparently isothermal transformation also occurs. In a decarburized alloy, on the other hand, the observed kinetic features, such as the dependence ofM s on cooling rate, were characteristic of an isothermal transformation. In contrast, Fe-29.6 wt pct Ni-10.7 wt pct Co alloys with carbon contents of 0.009 wt pct C and 0.003 wt pct C transform by burst kinetics to {259}γ plate. At both these carbon levels, theM b temperatures of the Fe−Ni−Co alloys are independent of cooling rate. It is proposed that the change in kinetic behavior of the Fe-25 pct Ni alloy with the different carbon contents is due to the occurrence of dynamic thermal stabilization in the higher carbon alloy. Dynamic thermal stabilization is relatively unimportant in the Fe−Ni−Co alloys which transform by burst kinetics to {259}γ plate martensite. P. J. FISHER, formerly with the University of New South Wales D. J. H. CORDEROY, formerly with the University of New South Wales  相似文献   

2.
Microstructural dependence of Fe-high Mn tensile behavior   总被引:1,自引:0,他引:1  
The tensile properties of Fe-high Mn (16 to 36 wt pct Mn) binary alloys were examined in detail at temperatures from 77 to 553 K. The Mn content dependence of the deformation and fracture behavior in this alloy system has been clarified by placing special emphasis on the starting microstructure and its change during deformation. In general, the intrusion of hcp epsilon martensite (ε) into austenite (γ) significantly increases the work hardening rate in these alloys by creating strong barriers to further plastic flow. Due to the resulting high work hardening rates, large amounts of e lead to high flow stresses and low ductility. Alloys of 16 to 20 wt pct Mn are of particular interest. While these alloys are thermally stable with respect to bcc α’ martensite formation, 16 to 20 wt pct Mn alloys undergo a deformation induced ε →α’ transformation. The martensitic transformation plays two contrasting roles. The stress-induced ε α’ transformation decreases the initial work hardening rate by reducing locally high internal stress. However, the work hardening rate increases as the accumulated α’ laths become obstacles against succeeding plastic flow. These rather complicated microstructural effects result in a stress-strain curve of anomolous shape. Since both the Ms and Md temperatures for both the ε and α’-martensite transformations are strongly dependent on the Mn content, characteristic relationships between the tensile behavior and the Mn content of each alloy are observed.  相似文献   

3.
The fatigue crack growth rates (FCGR) of two unstable austenitic stainless steels (Fe-16 Cr-13Ni) and (Fe-18Cr-6.5Ni-0.19C) were determined in theMs-Md temperature range where a strain induced μ → α′ martensitic transformation occurs near the crack tip. These FCGR were compared to the rates measured in the stable austenitic phase of a Fe-31.5Ni and a Fe-34 Ni alloy and in the martensitic phase obtained by quenching the Fe-31.5 Ni alloy below Ms. In the Fe-31.5 Ni, the FCGR are an order of magnitude higher in the martensitic than in the austenitic structures for ΔK ≤ 40 ksi in. The FCGR of the stainless steels decrease markedly when the test temperature approachesM s in theM s - Md range. The FCGR for the alloy Fe-18Cr-6.5 Ni-0.19 C in a warm-worked condition are consistently higher than for the same alloy in the annealed condition for ΔK ≤ 40 ksi √in.. The results are discussed in terms of the influence of phase structures, stacking fault energy and work hardening exponent on the FCGR.  相似文献   

4.
The effects of carbon content and ausaging on austenite γ ↔ martensite (α′) transformation behavior and reverse-transformed structure were investigated in Fe-32Ni-12Co-4Al and Fe-(26,28)Ni-12Co-4Al-0.4C (wt pct) alloys. TheM s temperature, the hardness of γ phase, and the tetragonality of α′ increase with increasing ausaging time, and these values are higher in the carbon-bearing alloys in most cases. The γ → α′ transformation behavior is similar to that of thermoelastic martensite; that is, the width of α′ plate increases with decreasing temperature in all alloys. The αt’ → γ reverse transformation temperature is lower in the carbon-bearing alloys, which means that the shape memory effect is improved by the addition of carbon. The maximum shape recovery of 84 pct is obtained in Fe-28Ni-12Co-4Al-0.4C alloy when the ausaged specimen is deformed at theM s temperature and heated to 1120 K. There are two types of reverse-transformed austenites in the carbon-bearing alloy. One type is the reversed y containing many dislocations which were formed when the γ/α′ interface moved reversibly. The plane on which dislocations lie is (01 l)γ if the twin plane is (112)α′. The other type of reverse-transformed austenite exhibits γ islands nucleated within the α′ plates.  相似文献   

5.
Austenitic specimens of Fe-15 wt pct Ni-0.8 wt pct C were tested in tension at strain rates of 10−4 s−1 and 10−1 s−1 over the temperature range −20°C to 60 °C. The influence of strain rate and temperature on the deformation behavior depended on whether stress-assisted or strain-induced martensitic trans-formation occurred during testing. Under conditions of stress-assisted transformation, the ductility was low and independent of strain rate. However, when strain-induced transformation occurred, the duc-tility increased significantly and the higher strain rate resulted in greater ductility and more transfor-mation. Although the ductility increased continuously with temperature, the amount of strain-induced transformation decreased and no martensite was observed above 40 °C. Microstructural examination showed that the martensite was replaced by intense bands and that these bands contained very fine (111) fcc twins. The twinning resulted in enhanced plasticity by providing an additional mode of deformation as slip became more difficult due to dynamic strain aging at the higher temperature. This study confirms that the substructure following deformation will depend on the proximity of the deformation temperature to theM s σ temperature. At temperatures much greater thanM s σ , austenite twinning will occur, while at temperatures close toM s σ , bcc martensite will form.  相似文献   

6.
7.
The effect of austenite yield strength on the transformation to martensite was investigated in Fe-10 pct Ni-0.6 pct C alloys. The strength of the austenite was varied by 1) additions of yttrium oxide particles to the base alloy and 2) changing the austenitizing temperature. The austenite strength was measured at three temperatures above theM s temperature and the data extrapolated to the experimentally determinedM s temperature. It is shown that the austenite yield strength is determined primarily by the austenite grain size and that the yttrium oxide additions influence the effect of austenitizing temperature on grain size. As the austenite yield strength increases, both theM s temperature and the amount of transformation product at room temperature decrease. The effect of austenitizing temperature on the transformation is to determine the austenite grain size. The results are consistent with the proposal1 that the energy required to overcome the resistance of the austenite to plastic deformation is a substantial portion of the non-chemical free energy or restraining force opposing the transformation to martensite.  相似文献   

8.
The thermal cycling of an Fe-17 wt pct Mn alloy between 303 and 573 K was performed to investigate the effects of thermal cycling on the kinetics of the γε martensitic transformation in detail and to explain the previous, contrasting results of the change in the amount of ε martensite at room temperature with thermal cycling. It was observed that the shape of the γε martensitic transformation curve (volume fraction vs temperature) changed gradually from a C to an S curve with an increasing number of thermal cycles. The amount of ε martensite of an Fe-17 wt pct Mn alloy at room temperature increased with thermal cycling, in spite of the decrease in the martensitic start (M s) temperature. This is due to the increase in transformation kinetics of ε martensite at numerous nucleation sites introduced in the austenite during thermal cycling.  相似文献   

9.
Tensile deformation behavior of mechanically stabilized Fe-Mn austenite   总被引:1,自引:0,他引:1  
The tensile deformation behavior of mechanically-stabilized austenite is investigated in Fe-Mn binary alloys. A 30 pct thickness reduction by rolling at 673 K (above the Af temperature) largely suppresses the austenite (γ) to hcp epsilon martensite (ε) transformation in 17Mn and 25Mn steels. However, the deformation behavior of the mechanically stabilized austenite in the two alloys differs significantly. In 25Mn steel, the onset of plastic deformation is due to the stress-induced γ→ ε transformation and results in a positive temperature dependence of the yield strength. The uniform elongation is enhanced by the γ → ε transformation during deformation. In 17Mn steel, bccα′ martensite is deformation-induced along with e and a plateau region similar to Lüders band deformation appears at the beginning of the stress-strain curve. The mechanical stabilization of austenite also suppresses the intergranular fracture of 17Mn steel at low temperatures. M. STRUM, formerly Candidate for Ph.D. at the University of California at Berkeley  相似文献   

10.
Nitrogen solubility in liquid Fe, Fe-V, Fe-Cr-V, Fe-Ni-V and Fe-18 pct Cr-8 pet Ni-V alloys has been measured using the Sieverts’ method for vanadium contents up to 15 wt pct and over the temperature range from 1775 to 2040 K. Nitrogen solution obeyed Sieverts’ law for all alloys investigated. Nitride formation was observed in Fe-13 pet V, Fe-15 pet V and Fe-18 pet Cr-8 pet Ni-10 pet V alloys at lower temperatures. The nitrogen solubility increases with increasing vanadium content and for a given composition decreases with increasing temperature. In Fe-V alloys, the nitrogen solubility at 1 atm N2 pressure is 0.72 wt pet at 1863 K and 15 pct V. The heat and entropy of solution of nitrogen in Fe-V alloys were determined as functions of vanadium content. The first and second order interaction parameters were determined as functions of temperature as: $$e_N^V = \frac{{ - 463.6}}{T} + 0.148 and e_N^{VV} = \frac{{17.72}}{T} - 0.0069$$ The effects of alloying elements on the activity coefficient of nitrogen were measured in Fe-5 pet and 10 pet Cr-V, Fe-5 pet and 10 pet Ni-V and Fe-18 pet Cr-8 pct Ni-V alloys. In Fe-18 pet Cr-8 pet Ni-10 pet V, the nitrogen solubility at 1 atm N2 pressure is 0.97 wt pet at 1873 K. The second order cross interaction parameters, e N Cr,V and e N Ni,V , were determined at 1873 K as 0.00129 and ? 0.00038 respectively.  相似文献   

11.
A study has been made of superelasticity and the strain-memory effect in Cu?Al?Ni alloys in the composition range 14 wt pct Al and 2 to 3 wt pct Ni. These alloys have a bcc structure on quenching and show a low temperature martensitic transformation which is responsible for both the superelastic and strain-memory effects. Tests on both single and polycrystalline specimens showed that the maximum superelasticity occurred close toA s. At higher temperatures the effect gradually decreased, whilst at lower temperatures it decreased very quickly. The magnitude of the effect was large in single crystal specimens (>5.8 pct), but small in polycrystal specimens (<1.5 pct). The superelastic effect was caused by stress-induced martensite (SIM). Two types of SIM were observed; thin plates of thermoelastic martensite which were always reversible, and wide plates of burst-type martensite. This burst-type martensite was responsible for the major portion of SIM, and whether it was reversible or not on removal of the stress controlled the amount of superelasticity observed. The strain-memory effect occurred on deformation either in the martensitic state (temperature <M f) or in the temperature range where the martensite once formed was stable (temperature close toM s). Deformation caused reorientation of the martensite plates and when the specimen was heated, the martensite disappeared and the specimen reverted back to its original shape. This effect was explained on the basis of development of martensite plates of favorable orientation on stressing.  相似文献   

12.
The internal stress, σi, and the effective-stress exponent of the dislocation velocity,m*, have been determined during creep of Fe-3.5 at. pct Mo alloy at 1123 K under 10.8 to 39.2 MN/m2 and of Ni-10.3 at. pct W alloy at 1173 K under 19.6 to 88.2 MN/m2. Both alloys have been classified among class I alloys under a certain condition including the present one, because the applied-stress exponent of the steady-state creep rates,n, is almost 3. Values of σi obtained by stress-transient dip test were small and almost independent of the applied stress, σc, in Fe-3.5 Mo alloy. On the other hand, in Ni-10.3 W alloy σi increased with increasing σc as in the case of many pure metals. The value ofm* obtained by analyzing stress-relaxation curves immediately after creep deformation was unity in Fe-3.5 Mo alloy, whereas in Ni-10.3 W alloy it was about 2.5. These results indicate that the rate-controlling mechanisms in creep are different from each other in these two alloys and that the classification according ton-value does not always coincide with the classification according to the rate-controlling mechanisms. It is concluded that the fact thatn ≃ 3 is not a sufficient evidence supporting that creep is controlled by one of microcreep mechanisms.  相似文献   

13.
Phase transformations have been studied inβ Ag-Cd alloys lying in the composition range 42.3 to 50.9 at. pct Cd. Thermal martensite with an orthorhombic structure was obtained on cooling below room temperature. The Ms temperature was found to change from —44° to — 137°C as the cadmium content changed from 44.2 at. pct Cd to 47.0 at. pct Cd. The martensite had a habit plane close to (133)β in good agreement with that calculated from the phenomenological theory assuming a (011) [0•11]β lattice-invariant shear. An fct martensite was obtained on moderate degrees of deformation at room temperature. This had a habit plane close to (110)β, again in good agreement with the phenomenological theory assuming a (110)[1•10]β lattice-invariant shear. On severe deformation a close-packed structure was obtained, this being fcc up to 45.5 at. pct Cd, hcp above 47.7 at. pct Cd, and a mixture of both fcc and hcp at 46.0 at. pct Cd. A spontaneous martensite with an fcc structure was found to occur along the thin edges of perforated specimens used for electron microscopy. A mechanism suggesting the course of the transformation has been proposed. Formerly Graduate Student, Department of Metallurgy, University of British Columbia, Vancouver, Canada.  相似文献   

14.
The martensite substructure after ausforming has been studied for two different martensite morphologies: partially twinned, lenticular martensite (Fe-33 pct Ni, Ms =-105‡C) and completely twinned “thin plate” martensite (Fe-31 pct Ni-0.23 pct C, Ms = -170‡C), and in both cases ausforming produces a dislocation cell structure in the austenite which is inherited, without modification, by the martensite. In the Fe-Ni alloy, the dislocation cell structure is found in both the twinned (near the midrib) and untwinned (near the interface) regions, the latter also containing a regular dislocation network generated by the transformation itself and which is unaltered by the austenite dislocation cell structure. Similarly, in the Fe-Ni-C alloy, the transformation twins are unimpeded by the prior cell structure. These observations show that carbide precipitation during ausforming is not necessarily required to pin the austenite cell structure and that the martensite-austenite interface, backed by either twins or dislocations, does not exhibit a ”sweeping” effect. Although the martensite transformation twins are not inhibited by the ausforming cell structure, they do undergo a refinement with increased ausforming, and it is indicated that the transformation twin width in martensite depends on the austenite hardness. However, the relative twin widths remain unchanged, as expected from the crystallographic theory. T. MAKI, Formerly with the University of Illinois  相似文献   

15.
The effect of Si addition on the microstructure and shape recovery of FeMnSiCrNi shape memory alloys has been studied. The microstructural observations revealed that in these alloys the microstructure remains single-phase austenite (γ) up to 6 pct Si and, beyond that, becomes two-phase γ + δ ferrite. The Fe5Ni3Si2 type intermetallic phase starts appearing in the microstructure after 7 pct Si and makes these alloys brittle. Silicon addition does not affect the transformation temperature and mechanical properties of the γ phase until 6 pct, though the amount of shape recovery is observed to increase monotonically. Alloys having more than 6 pct Si show poor recovery due to the formation of δ-ferrite. The shape memory effect (SME) in these alloys is essentially due to the γ to stress-induced ε martensite transformation, and the extent of recovery is proportional to the amount of stress-induced ε martensite. Alloys containing less than 4 pct and more than 6 pct Si exhibit poor recovery due to the formation of stress-induced α′ martensite through γ-ε-α′ transformation and the large volume fraction of δ-ferrite, respectively. Silicon addition decreases the stacking fault energy (SFE) and the shear modulus of these alloys and results in easy nucleation of stress-induced ε martensite; consequently, the amount of shape recovery is enhanced. The amount of athermal ε martensite formed during cooling is also observed to decrease with the increase in Si.  相似文献   

16.
The martensite ⇌ austenite transformations were investigated in Fe-Ni-Co alloys containing about 65 wt pct Fe and up to 15 wt pct Co. A change in morphology of martensite from plate-like to lath-type occurred with increasing cobalt content; this change in morphology correlates with the disappearance of the Invar anomaly in the austenite. The martensite-to-austenite reverse transformation differed depending on martensite morphology. Reversion of plate-like martensite was found to occur by simple disintegration of the martensite platelets. Reverse austenite formed from lath-type martensite was not retained when quenched from much aboveA s, with microcracks forming during theM→γ→M transformation.  相似文献   

17.
This paper describes some preliminary experiments on the feasibility of producing steels with an aligned martensitic microstructure. The parent austenite is initially textured, following which the martensite habit plane “activity” is regulated by transforming under strain. An Fe-20 pct Ni-5 pct Mn alloy exhibiting a lowM s temperature and a lath mar-tensite morphology was found suitable for producing aligned martensite. On heavy defor-mation this alloy developed a typical (123) [412] fcc texture. Subsequent annealing then produced a strong (001) [100] cube texture. Nearly 80 pct of the martensite formed was aligned when such a cube-textured specimen was strained 2.5 pet at 45 deg to the rolling direction followed by cooling under strain in liquid nitrogen to produce martensite. M. Khobaib and R. Quattrone, Formerly with the Construc-tion Engineering Research Laboratory, U.S. Army Corps of Engineers, Champaign, Illinois  相似文献   

18.
Sessile drop experiments were carried out in order to measure surface tensions and to investigate wetting characteristics of some Ni-based alloys on various ceramic substrates. The liquid-vapor surface tension (γLV) was found to be 1.764 N/m for pure Ni, 1.45 ± 0.11 N/m for Ni-20 pct Cr, 1.29 ± 0.06 N/m for Ni-20 pct Cr-1 pct Al, and 1.31 ± 0.09 N/m for Ni-20 pct Cr-4 pct Al. The commercial alloys UD520, UD718, UD720, and WASPALOY* showed non-wetting behavior on zirconia but wetting tendency on alumina substrates. Ni-20 pct Cr-1 pct Al showed non-wetting behavior on alumina, hafnia, and yttria substrates whereas Ni-20 pct Cr and Ni-20 pct Cr-4 pct Al were observed to be non-wetting on hafnia but wetting on yttria and alumina substrates. All the systems that exhibited wetting behavior were found to be non-wetting in the beginning; however, wet-ting improved with time. The wetting characteristics were apparently related to impurification of droplets during measurements, which is reflected in the solidification structure, rather than to the presence of oxides on the surface.  相似文献   

19.
The basis of this work was the investigation of improving the tensile properties of dislocated martensites by dispersion of precipitates in the austeniteprior to the martensite transformation. Two types of precipitation-hardenable austenitic alloys were used. One is based on Fe-22 Ni-4 Mo-0.28 C where the precipitates are Mo2C and are obtained by ausforming and aging, and the other is Fe-28 Ni-2 Ti where the precipitates are the coherent fccγ’ (Ni3Ti) ordered phase obtained by ausaging. After the austenitic dispersion treatment both alloys were transformed to martensite by quenching to liquid nitrogen and the properties measured and compared to martensites obtained by conventional heat treatment (i.e. no precipitates in austenite). The results show that prior dispersions increase the strength of martensite and this is interpreted as being due to an increase in dislocation density resulting from dislocation multiplication at the particles during the γ →M s transformation. In addition, the stabilities of the austenitic alloys are such that upon certain aging treatments, the alloys transform partially to martensite (due to precipitation) and “composite” materials are obtained whose strength depends on the volume fraction and yield strengths of the phases present. Formerly Graduate Student, Department of Materials Science and Engineering, University of California, Berkeley, Calif.  相似文献   

20.
The compressive strength at —196°C of martensites in Fe-0.26 pct C-24 pct Ni, Fe-0.4 pct C-21 pct Ni, and Fe-0.4 pct C-18 pct Ni-3 pct Mo alloys, all with subzero Ms temperatures, has been determined in the virgin condition and after one hour at temperatures from —80 to +400 °C. The effects of ausforming (20 pct reduction in area of the austenite by swaging at room temperature prior to the martensitic transformation) were also investigated. For the unausformed martensites, aging at temperatures up to 0 °C results in relatively small increases in strength. Above 0 °C, the age hardening increment increases rapidly, reaching a maximum at 100 °C. Above 100 °C, the strength decreases continuously with increasing tempering temperature except for the molybdenum-containing alloy, which exhibits secondary hardening on tempering at 400 °C. For the ausformed martensites, the response to aging at subzero temperatures is greater than for unausformed material. Strength again passes through a maximum on aging at 100 °C. However, on tempering just above 100 °C, the ausformed materials show a slower rate of softening than the unausformed martensites. The strengthening produced by the ausforming treatment is largest for the Fe-0.4 pct C-18 pct Ni-3 pct Mo alloy, but there is no evidence of carbide precipitation in the deformed austenite to account for this effect of molybdenum. This paper is based on a presentation made at the “Peter G. Winchell Symposium on Tempering of Steel” held at the Louisville Meeting of The Metallurgical Society of AIME, October 12-13, 1981, under the sponsorship of the TMS-AIME Ferrous Metallurgy and Heat Treatment Committees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号