首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat transfer, friction and thermal performance characteristics of CuO/water nanofluid have been experimentally investigated. The nanofluid was employed in a circular tube equipped with modified twisted tape with alternate axis (TA). The concentration of nanofluid was varied from 0.3 to 0.7% by volume while the twisted ratio (y/W) of TA was kept constant at 3. The experiments were performed in laminar regime (Reynolds number spanned 830 ≤ Re ≤ 1990). The uses of nanofluid together with typical twisted tape (TT), TA alone and TT alone were also examined. To evaluate heat transfer enhancement and the increase of friction factor, the Nusselt number and friction factor of the base fluid in the plain tube were employed as reference data. The obtained results reveal that Nusselt number increases with increasing Reynolds number and nanofluid concentration. By the individual uses of TA and TT, Nusselt numbers increase up to 12.8 and 7.2 times of the plain tube, respectively. The simultaneous use of nanofluid and TA improves Nusselt number up to 13.8 times of the plain tube. Over the range investigated, the maximum thermal performance factor of 5.53 is found with the simultaneous employment of the CuO/water nanofluid at 0.7% volume and the TA at Reynolds number of 1990. In addition, the empirical correlations for heat transfer coefficient, friction factor and thermal performance factor are also developed and reported.  相似文献   

2.
S. Jaisankar  K.N. Sheeba 《Solar Energy》2009,83(11):1943-1952
Experimental investigation of heat transfer, friction factor and thermal performance of twisted tape solar water heater with various twist ratios has been conducted and the results are compared with plain tube collector for the same operating conditions with Reynolds number varied from 3000 to 23,000. Experimental data from plain tube collector is validated with the fundamental equations and found that the discrepancy is less than ±5.35% and ±8.80% for Nusselt number and friction factor, respectively. Correlations have been developed for Nusselt number and friction factor with various twist ratios (Y = 3, 4, 5, 6) and are compared with the experimental values. Results conclude that, heat transfer and pressure drop are higher in twisted tape collector compared to the plain one. Among the various twist ratios, the minimum twist ratio 3 is found to enhance the heat transfer and pressure drop due to swirl generation. As the twist ratio increases, the swirl generation decreases and minimizes the heat transfer and friction factor.  相似文献   

3.
The effect of V-cut twisted tape insert on heat transfer, friction factor and thermal performance factor characteristics in a circular tube were investigated for three twist ratios (y = 2.0, 4.4 and 6.0) and three different combinations of depth and width ratios (DR = 0.34 and WR = 0.43, DR = 0.34 and WR = 0.34, DR = 0.43 and WR = 0.34). The obtained results show that the mean Nusselt number and the mean friction factor in the tube with V-cut twisted tape (VTT) increase with decreasing twist ratios (y), width ratios (WR) and increasing depth ratios (DR). Subsequently an empirical correlation also was formulated to match with experimental results with ± 6% variation for the Nusselt number and ± 10% for the friction factor.  相似文献   

4.
Turbulent convective heat transfer characteristics in a helical-ribbed tube fitted with twin twisted tapes have been investigated experimentally. The experiment was carried out in a double tube heat exchanger using the helical-ribbed tube having a single rib-height to tube-diameter ratio, e/DH = 0.06 and rib-pitch to diameter ratio, P/DH = 0.27 as the tested section. The insertion of the double twisted tapes with twist ratio, Y, in the range of 2.17 to 9.39 is to create vortex flows inside the tube. The inserted ribbed tube is arranged in similar directions of the helical swirl of the twisted tape and the helical rib motion of the tube (called co-swirl). Effects of the co-swirl motion of the ribbed tube and the double twisted tapes with various twist ratios on heat transfer and friction characteristics are examined. The results obtained from the ribbed tube and the twin twisted tape insert are compared with those from the smooth tube and the ribbed tube acting alone. The experimental results reveal that the co-swirling inserted tube performs much better than the ribbed/smooth tube alone at a similar operating condition. The co-swirl tube at Y ≈ 8 yields the highest thermal performance at lower Reynolds number (Re). In addition, the correlations of Nusselt number and friction factor as functions of Re, Pr and Y are also proposed.  相似文献   

5.
This paper presents an original experimental study on compound heat transfer enhancement in a tube fitted with serrated twisted tape. The serrations on two sides of the twisted tape with twist ratio of 1.56, 1.88, 2.81 or ∞ are the square-sectioned ribs with the identical rib-pitch and rib-height. The local Nusselt number and Fanning friction factor increase as the twist ratio decreases in the tube fitted with smooth or serrated twisted tape. In the Re range of 5000–25 000, heat transfer augmentation attributed to the serrated twisted tape falls in the range of 250–480% of the plain-tube level. That is about 1.25–1.67 times the heat transfer level in the tube fitted with smooth twisted tape. Fanning friction factors are respectively decreased and increased in the tubes fitted with smooth and serrated twisted tapes as Re increases. Based on the same pumping power consumption, the thermal performances of the tubes with smooth and serrated twisted tapes are compared. A set of empirical correlations that permits the evaluation of the Nusselt number and the Fanning friction factor in the developed flow region for the tubes fitted with smooth and serrated twisted tapes is generated for engineering applications.  相似文献   

6.
The paper presents a comparative investigation of enhanced heat transfer and pressure loss by insertion of single twisted tape, full-length dual and regularly-spaced dual twisted tapes as swirl generators, in a round tube under axially uniform wall heat flux (UHF) conditions. The investigation encompassed the Reynolds number based on the inlet tube diameter (D) ranging from 4000 to 19,000. The experiments are performed using single twisted tapes and full-length dual twisted tapes with three different twist ratios (y/w = 3.0, 4.0 and 5.0) and also regularly-spaced dual twisted tapes with three different space ratios (s/D = 0.75, 1.5 and 2.25). The effects of major parameters on heat transfer and friction factor are discussed and the results from both single and dual twisted tape inserts are compared with those from the plain tube. The result shows that the heat transfer of the tube with dual twisted tapes is higher than that of the plain tube with/without single twisted tape insert. For both single twisted tape and full-length dual twisted tapes, Nusselt number (Nu) and friction factor (f) tend to increase with decreasing twist ratio (y/w). The average Nusselt number and friction factor in the tube fitted with the full-length dual twisted tapes at y/w = 3.0, 4.0 and 5.0, are respectively 146%, 135% and 128%; and 2.56, 2.17 and 1.95 times of those in the plain tube. For the regularly-spaced dual twisted tapes, the heat transfer rate is decreased with increasing space ratio (s/D). The average Nusselt numbers in the tube fitted with the regularly-spaced dual twisted tapes (s/D) of 0.75, 1.5 and 2.25 are respectively, 140%, 137% and 133% of that in the plain tube. With the similar trend mentioned above, all dual twisted tapes with free spacing yield lower heat transfer enhancement in comparison with the full-length dual twisted tapes (s/D = 0.0).  相似文献   

7.
Enhanced heat transfer and pressure loss in a tube with loose-fit perforated twisted tapes were experimentally investigated. The effects of the twist ratio and the hole diameter ratio were also described. A constant twisted tape width of 52 mm, which is lower than the tube inside diameter of 56 mm, was used in order to reduce excessive pressure drops associated with full-width twisted tape elements. The tests were conducted using the tapes with three different ratios of pitch length of twisted tape to inner diameter of tube (twist ratios = 2, 2.5, 3) and three different ratios of hole to inner diameter (diameter ratios = 0.0714, 0.107, 0.143) in a range of Reynolds number 4860 to 24,130 under uniform heat flux conditions. The experimental findings revealed that the Nusselt number, friction factor, and thermal performance factor increase with decreasing twist ratio and hole diameter ratio. The maximum value of thermal performance factor of 1.27 was achieved for the case at a twist ratio of 2 and a hole diameter ratio of 0.0714. Eventually, the experimental results of Nusselt number, friction factor and thermal performance factor were correlated, and the deviations determined for Nusselt number, friction factor, and thermal performance factor were within ±7%, ±8%, and ±6%, respectively.  相似文献   

8.
This research has been performed to study the influences of multiple twisted tape vortex generators (MT-VG) on the heat transfer and fluid friction characteristics in a rectangular channel. The experiments conducted using the twisted tapes with three different twist ratios (y/w = 2.5, 3.0 and 3.5) for generating different swirl and turbulent intensities in the channel. The twisted tapes are assembled to obtained the MT-VG with three different free-spacing ratios, s/w = 1.66 (5 tapes), s/w = 1.25 (7 tapes) and s/w = 1.0 (9 tapes). The results for the Reynolds number ranged from 2700 to 9000 at constant Prandtl number, Pr = 0.7, using air as the test fluid, are examined. In the studied range, the presence of channel with MT-VG leads to increase in heat transfer rate over the use of smooth channel around 10.3 to 169.5%. The channel with the smaller twist ratio (y/w) and free-spacing ratio (s/w) provides higher heat transfer rate and pressure loss than those with the larger of twist ratio and free-spacing ratio under similar operation conditions. In addition, correlations of Nusselt number (Nu) and friction factor (f) have been developed and the thermal enhancement index at constant pumping power is also determined.  相似文献   

9.
This work presents an experimental study on the mean Nusselt number, friction factor and enhancement efficiency characteristics in a round tube with short-length twisted tape insert under uniform wall heat flux boundary conditions. In the experiments, measured data are taken at Reynolds numbers in a turbulent region with air as the test fluid. The full-length twisted tape is inserted into the tested tube at a single twist ratio of y/w = 4.0 while the short-length tapes mounted at the entry test section are used at several tape length ratios (LR = ls/lf) of 0.29, 0.43, 0.57 and 1.0 (full-length tape). The short-length tape is introduced as a swirling flow device for generating a strong swirl flow at the tube entry before decaying along the tube. On the other hand, the full-length tape (LR = 1.0) is expected to produce a strongly swirling flow over the whole tube. The variation of heat transfer and pressure loss in the form of Nusselt number (Nu) and friction factor (f) respectively is determined and depicted graphically. The experimental result indicates that the short-length tapes of LR = 0.29, 0.43 and 0.57 perform lower heat transfer and friction factor values than the full-length tape around 14%, 9.5% and 6.7%; and 21%, 15.3% and 10.5%, respectively. In addition, it is apparent that the enhancement efficiency of the tube with the short-length tape insert is found to be lower than that with the full-length one. The mean deviation between measured and correlated values of the Nusselt number is in the order of ± 7% in the range of Reynolds numbers from 4000 to 20,000.  相似文献   

10.
Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical twisted tape of various twist ratios has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes, which increases the heat transfer and pressure drop. The empirical correlations developed for Nusselt number and friction factor with various twist ratios (Y = 3, 4, 5, 6) are fitted with the experimental data with a discrepancy of less than ±4.54% and ±6.13% respectively. The results are compared with a plain tube collector at the same operating conditions. Conclusions made from the results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector with minimum twist ratio and gradually decreases with increase in twist ratio. The overall thermal performance of twisted tape collector is found to increase with increase in solar intensity.  相似文献   

11.
The article presents an experimental study of turbulent heat transfer and flow friction characteristics in a circular tube equipped with two types of twisted tapes: (1) typical twisted tapes and (2) alternate clockwise and counterclockwise twisted tapes (C–CC twisted tapes). Nine different C–CC twisted tapes are tested in the current work; they included the tapes with three twist ratios, y/w = 3.0, 4.0 and 5.0, each with three twist angles, θ = 30o, 60o and 90o. The experiments have been performed over a Reynolds number range of 3000–27,000 under uniform heat flux conditions, using water as working fluid. The obtained results reveal that the C–CC twisted-tapes provide higher heat transfer rate, friction factor and heat transfer enhancement index than the typical twisted-tapes at similar operating conditions. The results also show that the heat transfer rate of the C–CC tapes increases with the decrease of twist ratio and the increase of twist angle values. Depending on Reynolds number, twist ratio and twist angle values, the mean Nusselt numbers in the tube fitted with the C–CC twisted tapes are higher than those with the typical ones and the plain tube around 12.8–41.9% and 27.3–90.5%, respectively. The maximum heat transfer enhancement indexes of the C–CC twisted tapes with θ = 90o for y/w = 3.0, 4.0 and 5.0, are 1.4, 1.34 and 1.3, respectively. In addition, correlations of the Nusselt number and the friction factor for using the C–CC twisted tapes are also determined. Both predicted Nusselt number and friction factor are within ±15% and ±15% deviation compared to the experimental data.  相似文献   

12.
This paper presents experimental and numerical results of the local heat transfer coefficient and flow characteristics of decaying turbulent swirl flow generated by short-length twisted tapes (STs). The STs with three different twist ratios (y/W = 3, 4 and 5) were applied at the entrance of the test section. The experiments were conducted under uniform heat flux conditions for water flow rates in the range of 5200 ≤ Re ≤ 15,300. The results of the tube without swirl generator as well as the ones with full-length twisted tape (TTs) are also reported as the reference cases. The experimental results reveal that the tube with STs consistently yields higher local Nusselt number than that the one without swirl generator. The local Nusselt numbers decrease with increasing axial distance (x/D) due to the decaying effect. Although, STs consistently provide poorer heat transfer than TTs over the range studied, the STs with y/W = 4 and 5 yield superior thermal performance factors to the TTs at the same twist ratios, for Reynolds numbers beyond 10,000 due to the prominent effect of heat transfer improvement over that of the increase of friction factor. For better understanding, the visualization of flow structure (pathline and vector plot) in the tubes with STs is also presented.  相似文献   

13.
Experimental investigation of heat transfer and friction factor characteristics in a double pipe heat exchanger fitted with regularly spaced twisted tape elements, were studied. The inner and outer diameters of the inner tube are 50.6 and 25.8 mm, respectively and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made of the stainless steel strip with thickness of 1 mm and the length of 1500 mm. They were inserted in the test tube section in two different cases: (1) full-length typical twisted tape at different twisted ratios (y = 6.0 and 8.0), and (2) twisted tape with various free space ratios (S = 1.0, 2.0, and 3.0). The results, obtained from the tube with twisted tape insert, were compared with those without twisted tape. The results show that the heat transfer coefficient increased with twist ratio (y). Whereas the increase in the free space ratio (S) would improve both the heat transfer coefficient and friction factor. The results from each case were correlated for Nusselt number and friction factor. Subsequently, the predicted Nusselt number and friction factor from the correlations were plotted to compare with the experimental data. It was found that Nusselt number was within ± 15% and ± 10% for friction factor.  相似文献   

14.
通过模拟和实验的方法研究在湍流工况下(3 000Re10 000)换热器管内插入不同扭带模型后的传热特性和阻力特性。区别于传统螺旋扭带,提出一种顺时针与逆时针交替扭转的正反扭带。对不同扭率的传统扭带以及扭率为3的无缺口和半圆缺口正反转扭带进行模拟计算,并将模拟结果与实验结果进行对比验证。结果表明:在湍流流态下,雷诺数越小,扭带的强化换热效果表现越好;对不同扭率的扭带,其努塞尔数、摩擦系数和综合性能指标随扭率的减小而增大;扭率为3时,两种正反扭带的强化换热效果均优于传统扭带,无缺口正反扭带的换热效果最好;模拟计算的结果数据与实验结果数据比较,最大误差不超过8%。  相似文献   

15.
In this article, a 3D numerical simulation for investigating friction factor and heat transfer enhancements in case of inserting normal or perforated dual twisted tapes (TTs) in converging‐diverging tubes (CDTs) is presented. The effects of Reynolds number changing from 10,000 to 20,000 and a various number of holes (N = 0, 1, 2, and 3) in TTs, under constant uniform heat flux on tube outer wall and using water as working fluid circumstances, were examined. It was found that generally using dual TTs in CDTs improves the Nusselt number up to 9% compared to bare CDTs. Perforating TTs do not have a noticeable effect on heat transfer, but decrease the friction factor significantly, up to 396% compared to normal dual TT implantation, in higher Reynolds numbers. Following that, thermal performance factor considerably increases up to 57%, compared to CDTs with normal dual TTs. To show the mechanism of these effects, velocity streamlines are presented and will be discussed in this paper.  相似文献   

16.
Friction and compound heat transfer behaviors in a dimpled tube fitted with a twisted tape swirl generator are investigated experimentally using air as working fluid. The effects of the pitch and twist ratio on the average heat transfer coefficient and the pressure loss are determined in a circular tube with the fully developed flow for the Reynolds number in the range of 12,000 to 44,000. The experiments are performed using two dimpled tubes with different pitch ratios of dimpled surfaces (PR = 0.7 and 1.0) and three twisted tapes with three different twist ratios (y/w = 3, 5, and 7). Experiments using plain tube and dimpled tube acting alone are also carried out for comparison. The experimental results reveal that both heat transfer coefficient and friction factor in the dimpled tube fitted with the twisted tape, are higher than those in the dimple tube acting alone and plain tube. It is also found that the heat transfer coefficient and friction factor in the combined devices increase as the pitch ratio (PR) and twist ratio (y/w) decrease. In addition, an empirical correlation based on the experimental results of the present study is sufficiently accurate for prediction the heat transfer (Nu) and friction factor (f) behaviors.  相似文献   

17.
Forced convective heat transfer on the impinged plate associated with swirling impinging jets (SIJ) issuing from nozzles inserted by twisted tapes has been investigated. Swirling impingement jets with several swirl rates were generated by twisted tapes at different twist ratios (y/W = 3, 4, 5, and 6). The experiments were performed by locating nozzle at 4 different jet-to-plate spacings of L/D = 2, 4, 6 and 8. A jet Reynolds number varied between 4000 and 16000. Attributing to a high momentum transfer rate, an efficient heat transfer was obtained by using the jet with a small jet-to-plate spacing and the twist tape with a large twist ratio at high Reynolds number. At small jet-to-plate spacings (L/D = 2 and 4), swirling impinging jets gave higher heat transfer rate than conventional impinging jets while at large jet-to-plate spacings (L/D = 6 and 8), the opposed result was obtained. Over the range examined, only SIJ induced by the twisted tape at a twist ratio of 6 consistently provided higher average Nusselt numbers than CIJ.  相似文献   

18.
An experimental investigation has been conducted for determining heat transfer enhancement by inserting helically twisted tapes, to induce co- and counter-swirl flows, (the tapes are symbolized as co-HTT and C-HTT, respectively). Tape pitch ratio (p/D) was varied between 1.0 and 2.0, while tape width ratio (w/D) and twist ratio (y/w) were fixed at 0.2 and 3.0, respectively. The experiments were performed for fully developed turbulent flow with Reynolds number range (Re) between 6000 and 20,000, under uniform wall heat flux condition. At similar conditions, the use of Co-HTT results in lower Nusselt number and friction factor but higher thermal performance factor than that of C-HTT. Nusselt number and friction factor increase with decreasing pitch ratio, while thermal performance factor possesses opposite trend. In addition, the empirical correlations for Nusselt number, friction factor and thermal performance factor as functions of the Reynolds number (Re), Prandtl number (Pr) and tape pitch (p/D), were developed through a multi-variant linear normal regression.  相似文献   

19.
In the present study, the heat transfer performance and friction factor characteristics in a circular tube fitted with twisted wire brush inserts were investigated experimentally. The twisted wire brush inserts were fabricated with four different twisted wire densities of 100, 150, 200, and 250 wires per centimeter by winding a 1 mm diameter of the copper wire over a 5 mm diameter of two twisted iron core-rods. Heat transfer and friction factor data in tubes were examined for Reynolds number ranging from 7,200 to 50,200. The results indicated that the presence of twisted wire brush inserts led to a large effect on the enhancement of heat transfer with corresponding increase in friction factor over the plain tube. The Nusselt number and friction factor of using the twisted wire brush inserts were found to be increased up to 2.15 and 2.0 times, respectively, than those over the plain tube values. Furthermore, the heat transfer performance was evaluated to assess the real benefits of using those type of inserts and the performance was achieved 1.85 times higher compared to the plain tube based on the constant blower power. Finally, correlations were developed based on the data generated from this work to predict the heat transfer, friction factor, and thermal performance factor for turbulent flow through a circular tube fitted with the twisted wire brush inserts in terms of wire density (y), Reynolds number (Re), and Prandtl number (Pr).  相似文献   

20.
Heat transfer, flow friction and thermal performance factor characteristics in a tube fitted with delta-winglet twisted tape, using water as working fluid are investigated experimentally. Influences of the oblique delta-winglet twisted tape (O-DWT) and straight delta-winglet twisted tape (S-DWT) arrangements are also described. The experiments are conducted using the tapes with three twist ratios (y/w = 3, 4 and 5) and three depth of wing cut ratios (DR = d/w = 0.11, 0.21 and 0.32) over a Reynolds number range of 3000–27,000 in a uniform wall heat flux tube. The obtained results show that mean Nusselt number and mean friction factor in the tube with the delta-winglet twisted tape increase with decreasing twisted ratio (y/w) and increasing depth of wing cut ratio (DR). It is also observed that the O-DWT is more effective turbulator giving higher heat transfer coefficient than the S-DWT. Over the range considered, Nusselt number, friction factor and thermal performance factor in a tube with the O-DWT are, respectively, 1.04–1.64, 1.09–1.95, and 1.05–1.13 times of those in the tube with typical twisted tape (TT). Empirical correlations for predicting Nusselt number and friction factor have been employed. The predicted data are within ±10% for Nusselt number and ±10% for friction factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号