首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
化学镀Ni-W-P合金沉积机理初探   总被引:14,自引:1,他引:13  
通过对化学镀的Ni-W-P合金镀层镀态下的表面形貌特征及镀层断面组织的观察与分析,研究了化学镀Ni-W-P合金镀层的沉积机理。结果表明,合金原子优先在基底金属表面能量较高的划痕、蚀孔边缘处沉积。Ni-W-P非晶态合金镀层由圆形基元以交错层叠方式叠加而成。  相似文献   

2.
为了研究Zn-Co合金的电化学性能及耐蚀机理,采用双脉冲电结晶法制备了不同Co含量的纳米Zn-Co合金镀层。通过X射线衍射仪(XRD)、扫描电镜(SEM)、Tafel极化曲线及中性盐雾试验分析探讨了镀层中Co含量对其组织结构、表面形貌及耐蚀性能的影响,采用金相显微镜对纯Zn镀层及Zn-Co合金镀层盐雾腐蚀前后的形貌进行观察,并采用XRD对腐蚀产物进行检测,探讨了Zn-Co合金的耐蚀机理。结果表明:随Zn-Co合金镀层中Co含量的升高,其平均晶粒尺寸依次减小,耐腐蚀性能逐渐提高;合金晶体结构为六方晶系,晶面择优取向由(101)、(102)和(112)面转向为(101)面及新形成的CoZn13面。在腐蚀过程中Co元素可有效稳定Zn(OH)2,使其难以转变为ZnO,腐蚀产物以氢氧化锌复盐的形式存在,该产物是不良导体,抑制了腐蚀的进行,提高了Zn-Co合金镀层的耐蚀性。  相似文献   

3.
目前关于在热镀锌液中添加微量Mg对合金镀层组织结构及耐蚀性影响的报道较少.采用Mg含量分别为0.05%,0.10%,0.30%的锌基合金在低碳钢退火板上热镀锌.利用扫描电镜及能谱仪分析镀层的表面形貌、组织结构及成分,并对镀层进行中性盐雾试验,研究了锌液中微量Mg对镀层的形貌、组织结构及耐蚀性的影响.结果表明:锌液中添加微量Mg可明显细化镀层晶粒,使晶粒尺寸减小,锌液中Mg含量从0.05%增加至0.30%,镀层晶粒尺寸不断变小;添加微量Mg不影响镀层主体结构,但会细化各金属间化合物的晶粒,提高了镀层的耐蚀性,Mg含量升高,镀层耐蚀性增强.  相似文献   

4.
铝锌硅镀层(Galvalume)作为钢铁基体的热浸镀材料,具有良好的耐腐蚀能力,但是Galvalume镀层在受力变形时容易出现裂纹。针对热浸镀Galvalume镀层成形开裂问题,通过对不同镀层厚度(重量)镀铝锌板进行冲压试验和180°弯曲试验,观察裂纹源的产生。采用扫描电镜(SEM)和能谱(EDS)对镀层及中间过渡层进行研究,分析影响镀层冲压开裂的原因。结果显示:镀层的重量(厚度)是影响其冲压开裂的主要原因,随着镀层厚度的下降,镀层外侧受拉应力作用开裂趋势变小;开裂位置显示主要元素为Fe、Al、Si元素,变形过程中Galvalume合金过渡层相对于镀层更容易开裂;Galvalume合金过渡层的厚度是影响Galvalume冲压开裂的主要原因,随着合金过渡层厚度的降低,过渡层开裂趋势变小。  相似文献   

5.
用慢应变速率拉伸测试、金相(OM)、扫描电镜(SEM)及透射电镜(TEM)分析等方法研究了Al-3.88Cu-1.18Mg-0.31Mn铝合金在T6时效状态下的应力腐蚀开裂(SCC)行为。结果表明:随着时效时间的延长,合金的应力腐蚀开裂敏感性逐渐降低。合金应力腐蚀与晶间腐蚀具有正相关性,其本质是晶界与晶内存在电位差,形成电偶腐蚀,在应力作用下,导致晶界连续腐蚀。在时效过程中,晶界S'(S)相由连续分布逐渐转变为断续分布,晶内析出相由GPB区逐渐转变为S'(S)相,并形成PFZ。这样的微观组织转变使合金应力腐蚀开裂敏感性随着时效的进行逐渐降低。  相似文献   

6.
通过对等温锻造合金进行直接时效、蠕变性能测试和组织形貌观察,研究了微量元素P、B对GH4169合金组织结构及蠕变行为的影响.结果表明:添加微量P、B可促使粒状δ相在合金中析出,且沿晶界不连续析出的δ相可抑制晶界滑移,提高合金的蠕变抗力;在试验温度和应力范围内,测定出GH4169G合金具有较高的蠕变激活能Q=594.7 ...  相似文献   

7.
采用籽晶法制备含有大角度晶界(约20°)的双晶试板,通过分析不同Hf含量(质量分数:0%,0.4%)的含Re合金晶界处析出相、γ/γ′组织、晶界成分及1100℃/100MPa横向持久性能,研究Hf对晶界组织及高温力学性能的影响。结果表明:Hf显著提高了铸态合金大角度晶界处共晶和碳化物体积分数;热处理后,Hf显著抑制了晶界胞状再结晶组织的形成,含Hf合金的1100℃/100MPa横向持久寿命均显著提高。晶界持久性能与晶界析出相种类、形貌、含量和成分密切相关,而Hf元素在晶界未发现显著的偏聚。本研究对先进镍基单晶合金中晶界缺陷的评价及Hf元素晶界强化作用机制的认识具有一定的指导意义。  相似文献   

8.
目前,有关钢材表面热浸镀铝层中添加锰元素及扩散退火处理对镀层组织、结构及性能的影响研究很少。采用热浸镀工艺在Q235钢表面制备纯铝及Al-2%Mn,Al-9%Mn,Al-13%Mn铝锰合金镀层,并进行扩散退火处理。通过XRD、SEM及EDS等分析了扩散退火后镀层的组织结构和表面形貌,用划痕法测试了各镀层的抗划擦性能。结果表明:经扩散退火后,4种镀层都出现了Fe4Al13相,其中铝锰合金镀层中出现多种铝锰金属化合物,如Al8Mn5,MnAl6,Mn3Al10;铝锰镀层的抗划擦性能约为纯铝镀层的1.5倍,Mn元素的加入使合金镀层的抗划擦性能有显著提高。  相似文献   

9.
电流密度对紫铜基体电沉积Fe-W合金的影响   总被引:1,自引:1,他引:0  
针对目前Fe-W合金镀层中w含量较低致使镀层硬度不高的问题,通过电沉积法在铜表面沉积Fe-w合金,获得了一种W含量较高、表面致密且高硬度的非晶合金涂层.用SEM,XRD和EDS表征了镀层形貌、结构和成分,并测定了镀层的显微硬度.结果表明:不同电流密度下镀层均为非晶结构,形貌为圆球状颗粒;镀层厚10~100 μm;随着电...  相似文献   

10.
脉冲电镀Zn-Ni合金工艺参数对镀层Ni含量及形貌的影响   总被引:1,自引:0,他引:1  
为了优化Zn-Ni合金制备工艺,在硫酸盐型Zn-Ni合金镀液中脉冲电镀Zn-Ni合金层。分别采用扫描电镜和X射线成分分析镀层形貌和成分,通过中性盐雾试验测试镀层耐蚀性。研究了脉冲参数、工艺条件对Zn-Ni合金镀层Ni含量与形貌的影响。结果表明:镀液温度、平均电流密度、频率、逆向脉冲系数及占空比对镀层性能和形貌均有较大影响;最佳工艺参数为温度60℃,平均电流密度70 m A/cm2,脉冲频率200 Hz,逆向脉冲系数0.4,占空比0.7,此时Zn-Ni合金镀层晶粒细小,表面平整光亮,呈银白色,镀层Ni含量为13%,耐蚀性优良。  相似文献   

11.
The propagation of short cracks in the neighbourhood of grain boundaries have been investigated using a technique were the crack is modelled by distributed dislocation dipoles and the plastic deformation is represented by discrete dislocations. Discrete dislocations are emitted from the crack tip as the crack grows. Dislocations can also nucleate at the grain boundaries. The influence on crack growth characteristics of the distance between the initial crack tip and the grain boundary has been studied. It was found that crack growth rate is strongly correlated to the dislocation pile-ups at the grain boundaries.  相似文献   

12.
The influence from different grain boundary configurations on the crack growth rate of a microstructurally short edge crack, located within one grain and subjected to remote fatigue loading, is studied. The study is performed using a dislocation formulation, were the geometry is described by dislocation dipole elements in a boundary element approach and the plasticity by discrete dislocations, located along specific slip planes in the material. Plane strain and quasi-static conditions are assumed. The crack is assumed to grow in a single shear mechanism due to nucleation, glide and annihilation of discrete dislocations. Different grain boundary configurations in front of the growing crack are considered, including both high angle and low angle grain boundaries. It is shown that both grain boundary configuration and distance between the crack and a grain boundary has a pronounced influence on the crack growth rate.  相似文献   

13.
The crack closure behaviour of microstructurally small fatigue cracks was numerically simulated by combining the crack-tip slip band model with the plasticity-induced crack closure model. A Stage II crack started to propagate from an initiated Stage I crack. When the plastic zone was constrained by the grain boundary or the adjacent grain with higher yield stresses, the crack opening stress increased with crack extension, and the effective component of the stress range decreased. The crack-tip opening displacement range (Δ CTOD ), first decreased with crack extension due to the development of the residual stretch, then increased until the tip of the plastic zone reached the neighbouring grain boundary. When the plastic zone was blocked by the grain boundary, Δ CTOD began to decrease. The arrest condition of cracks was given by the threshold value of Δ CTOD . At the fatigue limit, the arrest of small cracks takes place just after the Stage II crack crosses the grain boundary when the grain boundary does not act as a barrier. Only when the grain boundary has a blocking strength and the yield stress of adjacent grains is not so high, the arrest of Stage II cracks takes place before the crack reaches the grain boundary. The fatigue limit decreases with the mean stress. The predicted relation between the fatigue limit and the mean stress is close to the modified Goodman relation.  相似文献   

14.
The influence of the grain boundary on the fatigue behavior was studied by two three-point-bending (TPB) specimens. One TPB specimen was named Bicrystal 1, whose pre-crack was along the grain boundary and the applied load paralleled to pre-crack direction, while the other TPB specimen was named Bicrystal 2, whose the pre-crack was perpendicular to the grain boundary and the applied load paralleled also to the pre-crack. It was found that the rate of the fatigue crack growth of Bicrystal 1 was about a tenfold higher than that of Bicrystal 2. The fatigue behavior of Bicrystal 2 specimens was dependent on the distance between the crack tip and grain boundary. The crack growth rate was highest when the crack tip was at a critical distance to the grain boundary, while the rate was the lowest when the crack tip reached grain boundary. After the crack was over the grain boundary, the crack growth rate increased. The crystallographic finite element method was applied to analyze the stress and strain structure ahead  相似文献   

15.
The influence of the grain boundary on the fatigue behavior was stuied by two three-point-bending (TPB) specimens.One TPB specimen was named Bicrystal 1,whose pre-crack was along the grain boundary and the applied load paralleled to pre-crack direction,while the other TPB specimen was named Bicrystal 2,whose the pre-crack was perpendicular to the grain boundary and the applied load paralleled also to the pre-crack.It was found that the rate of the fatigue crack growth of Bicrystal 1 was about a tenfold higher than that of Bicrystal 2.The fatigue behavior of Bicrystal 2 specimens was dependent on the distance between the crack tip and grain boundary.The crack growth rate was highest when the crack tip was at a critical distance to the grain boundary,while the rate was the lowest when the crack tip reached grain boundary.After the crack was over the grain boundary,the crack growth rate increased.The crystallographic finite element method was applied to analyze the stress and strain structure ahead of the crack,in order to reveal the above characteristics of the fatigue behavior.It is the grain boundary-induced redistribution of stresses near the crack tip that induces the difference of fatigue behavior.  相似文献   

16.
Iridium coating was prepared by the double glow plasma. The phase identification and the microstructure observation of the fracture surface of the coating were examined by X-ray diffraction and scanning electron microscopy, respectively. The deposition rate of the coating was up to 20μm/h. The iridium coating failed predominantly by grain boundary brittle fracture at room temperatures. Brittle intergranular fracture does not depend on grain size. Intergranular fracture in iridium coating has been considered to arise from low cohesive strength of the grain boundaries.  相似文献   

17.
In situ observations of crack propagation in sulfur-doped coarse-grained nickel were performed for the specimens with grain boundary microstructure pre-determined by SEM/EBSD analysis. The role of grain boundary microstructure was studied in the crack propagation in nickel embrittled by grain boundary segregation of sulfur. It was found that the main crack tends to predominantly propagate along random boundaries, and the crack propagation rate can be locally accelerated at the grain boundary network with a high connectivity of random boundaries. On the other hand, the cracks can propagated along fracture-resistant low-Σ coincidence site lattice (CSL) boundary only when the trace of the grain boundary is arranged being almost parallel to slip bands in the adjacent grains. The local crack propagation rate was found to become lower when a crack propagated along low-Σ CSL boundaries. Moreover, when the crack propagation is inhibited by low-Σ CSL boundaries, the branching of propagating crack occurs at partially cracked triple junctions. The crack propagation can locally slow down due to the occurrence of crack branching. The optimum grain boundary microstructure for the control of sulfur segregation-induced brittle fracture is discussed on the basis of new findings obtained from the in situ observations on crack propagation and fracture processes in polycrystalline nickel.  相似文献   

18.
The effect of grain size on the near threshold stress intensity factor in a low-carbon steel has been studied. In Stage I crack propagation depends on the microstructure of the material; in Stage II the growth rate curves for different grain sizes appear to merge together. There is a kink or a dip in the crack propagation rate where Stages I and II meet, representing a retardation in crack growth. Analysis of published data shows that such a kink often occurs. It is proposed that this temporary retardation in crack growth is due to the resistance offered by the grain boundary to the plastic zone when it tries to cross the first grain and move on to the adjacent grains.  相似文献   

19.
用热模拟方法研究了氮含量对钒微合金钢粗晶热影响区(CGHAZ)的组织和性能的影响。结果表明,氮含量为0.0031%或0.021%时,CGHAZ的韧性较差。氮含量0.0031%时CGHAZ中有少量的Ti(C,N),晶界铁素体(GBF)较少,晶内有大量尺寸较大的侧板条铁素体(FSP),解理裂纹沿FSP的直线扩展使其韧性较差。氮含量0.021%时在CGHAZ中生成了较为粗大的(Ti, V)(C, N)和GBF,解理裂纹沿GBF扩展使其韧性较差。氮含量为0.012%时低温韧性较好,在CGHAZ中生成了大量细小的(Ti, V)(C, N)粒子,且GBF尺寸相对较小,晶内有大量的针状铁素体(AF)。这些因素都有利于阻止裂纹扩展,使其低温韧性显著提高。  相似文献   

20.
In this paper, recent work on the effects of micro-texture on the growth behavior of short fatigue cracks in high strength aluminum alloys (such as Al-Li 8090 alloys and AA 2026 Al alloys) was first reviewed. The twist and tilt angles of crack plane deflection at a grain boundary were identified as the key factors that controlled the growth of a short fatigue crack across the grain boundary in these alloys. A large twist angle of the crack plane deflection at the grain boundary gave rise to a higher resistance to crack growth across the grain boundary, while a small twist angle represented a smaller resistance.The possible smallest twist angle of crack deflection at a boundary between a grain with a typical orientation (such as brass and goss orientations) and a randomly orientated grain was calculated and mapped in Euler space. The orientation of the neighboring grain that showed high resistance to crack growth was identified as a peak in these twist angle plots. The theoretical results were consistent with the results obtained from studies of short crack growth in AA 8090 and AA 2026 Al alloys. The results from this work paved the way to quantification of the texture effects on early growth of fatigue cracks in planar slip alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号