首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(14):20053-20061
The composition governs the crystallization ability, the type and content of crystal phases of glass-ceramics. Glass-ceramic joining materials have generated more research interest in recent years. Here, we prepared a novel Li2O–MgO–Al2O3–SiO2 glass-ceramic for the application of joining Si3N4 ceramics. We investigated the influence of the MgO/Al2O3 composition ratio on microstructure and crystallization behaviour. The crystallization kinetics demonstrated that the glasses had excellent crystallization ability and high crystallinity. β-LiAlSi2O6 and Mg2SiO4 were precipitated from the glass-ceramics, and the increase of MgO concentration was conducive to the precipitation of Mg2SiO4. Among the glass-ceramic samples, the thermal expansion coefficient of LMAS2 glass-ceramic was 3.1 × 10?6/°C, which was very close to that of Si3N4 ceramics. The wetting test showed that the final contact angle of the glass droplet on the Si3N4 ceramic surface was 32° and the interface was well bonded.  相似文献   

2.
Effects of calcination temperature for Pt-SO 4 2? /ZrO2?Al2O3 (PSZA) catalysts in n-hexane hydroisomerization were investigated by N2-adsorption, XRD, TG-DTA, FTIR, XPS and H2-TPR. An optimum calcination temperature is helpful to complete the crystallization process, resulting in better distribution of alumina into zirconia crystal and producing new acid centers responsible for higher catalytic activity.  相似文献   

3.
Glass and Ceramics - Reliable protection of the screens of next-generation mobile devices requires the use of transparent materials which are stronger than glass. In the present work the influence...  相似文献   

4.
《Ceramics International》2020,46(5):6205-6211
This study utilized the single hot thermocouple technique to examine the dissolution behavior of lumped magnesium oxide (MgO) in CaO–Al2O3–SiO2 ternary slags. The aluminum oxide (Al2O3) content in the slag (C/S = 1) varied from 10% to 30%; the MgO sphere with a diameter of 1 mm was placed in molten slags at 1,550 °C. Results showed that the dissolution rate decreased as the Al2O3 content increased up to 20%. Over 20% Al2O3, MgAl2O4 was formed at the interface of MgO and it did not fully melt at 30% Al2O3. The dissolution behavior and the formation of MgAl2O4 were analyzed by a phase diagram provided by Factsage 7.0 software. In the case of less than 20% Al2O3 content, apparent sphere radii were measured; the shrinking core model was then applied to understand the dissolution mechanism. The dissolution rate of both slags was controlled by boundary layer diffusion. The dissolution rate at 20% Al2O3 slag appeared to fit the behavior to the boundary layer diffusion, although it deviated during the middle stage of the dissolution because of MgAl2O4 formation. The 10% Al2O3 slag fitted well to the boundary layer diffusion curve; the obtained diffusion coefficient was 0.94 × 10−9 m2/s.  相似文献   

5.
Cordierite aerogels, made by supercritical drying, and xerogels, formed by ambient pressure drying, have been prepared by combining two different recipes. The chemical composition of the gels varied from stoichiometric cordierite 2MgO·Al2O3·5SiO2 to 0·5MgO·1·4Al2O3·5SiO2 due to different procedures for washing of the gels. The crystallization of nearly stoichiometric cordierite gels was shown to be relatively complex involving the formation of several metastable phases such as μ-cordierite (Mg2Al4Si5O18), spinel (Al6Si2O13) and sapphirine (Mg4Al8Si2O20) before the equilibrium phase composition was obtained at around 1350°C. On the other hand, during crystallization of gels with stoichiometry close to 0·5MgO·1·4Al2O3·5SiO2 the equilibrium phases mullite, cristobalite and α-cordierite were the major phases formed during heat treatment. A lower densification rate was observed for aerogels compared to xerogels due to a larger pore size. A lower crystallization temperature in aerogels probably due to heterogeneous nucleation reduced the densification. For gels with a composition near 0·5MgO·1·4Al2O3·5SiO2 nucleation and densification occur simultaneously and large differences in the densification behavior was observed. ©  相似文献   

6.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   

7.
8.
Hydrogen production from ethanol reforming was investigated on bimetallic PtNi catalysts supported on CeO2/Al2O3. Pt content was varied from 0.5 to 2.5 %. Physico-chemical characterization of the as-prepared and H2-reduced catalysts by TPR, XRD and XPS showed that Pt phase interacted with the Ni and Ce species present at the surface of the catalysts. This interaction leads to an enhancement of the reducibility of both Ni and Ce species. Loadings of Pt higher than 1.0 wt% improved the activity and stability of the Ni/CeO2–Al2O3 catalyst in ethanol steam reforming, in terms of lower formation of coke, C2 secondary products and a constant production of CO2 and H2. The amount and type of carbon deposited on the catalyst was analyzed by TG–TPO while the changes in crystalline phases after reaction were studied by XRD. It was found that for Pt contents higher than 1 wt% in the catalysts, a better contact between Pt and Ce species is achieved. This Pt–Ce interaction facilitates the dispersion of small particles of Pt and thereby improves the reducibility of both Ce and Ni components at low temperatures. In this type of catalysts, the cooperative effect between Pt0, Ni0 and reduced Ce phases leads to an improvement in the stability of the catalysts: Ni provides activity in C–C bond breakage, Pt particles enhance the hydrogenation of coke precursors (CxHy) formed in the reaction, and Ce increases the availability of oxygen at the surface and thereby further enhances the gasification of carbon precursors.  相似文献   

9.
Three different spinel compositions with MgO:Al2O3 molar ratios 2:1, 1:1 and 1:2 were studied using TiO2 as an additive up to 2 wt.%. Solid state reaction sintering technique was employed for all the compositions in the temperature range of 1550–1650°C. Attrition milling was done for the reduction of particle size. Sintered products were characterised in terms of densification and shrinkage studies, phase analysis, strength evaluation both at ambient temperature and at elevated temperature, strength retention after different number of thermal cycles at 1000°C, quantitative elemental analysis and microstructural studies.  相似文献   

10.
《Ceramics International》2020,46(15):23888-23894
The present study reports the impact of the introduction of nano-grained quartz (SA = 325 m2/g) into the composition on the structure and properties of the ceramic glaze of the CMAS-Na2O–K2O system. The results were compared to the glaze which had an identical oxide composition, with a difference that quartz was introduced in the form of quartz powder with a much smaller specific surface area SA = 1.41 m2/g. Both glazes are characterized by a large part of the glassy phase, above 90% by volume. The results obtained show a higher arrangement of the continuous glassy phase structure in the glaze with the addition of nano-quartz. This glaze also shows significantly higher values for all measured mechanical properties. It seems that if, in the near future, new cheaper methods for the production of nano-quartz are developed, it will be a new interesting direction of research aimed at improving the parameters of glazes and glass-ceramic materials of CMAS type.  相似文献   

11.
《应用陶瓷进展》2013,112(6):352-357
Abstract

MgO–Al2O3–SiO2 (MAS) cordierite based glass ceramics were prepared by volume crystallisation. X-ray diffraction, Scanning electron microscopy and Energy diffraction scanning were used to investigate crystallisation behaviour and the influence of P2O5 on microstructure MAS based glass ceramics. The results showed that P5+ could promote the phase separation of MAS glass and that the glass was divided into two areas, such as Mg4Al2Ti9O25 and the containing P5+ area at <900°C. Mg4Al2Ti9O25 and Mg3(PO4)2 in the area were both advantageous to the precipitation of μ cordierite, which further transformed to α cordierite due to P5+ in the residual glassy phase. However, P5+ inhibited the presence of cordierite when the heat treatment temperature was >900°C.  相似文献   

12.
《Ceramics International》2022,48(10):13659-13664
Metallurgical solid waste recycling is the shape of things to come in green development of Chinese iron and steel industry. Utilization of ironworks slag for producing mineral wool at high temperature is an important approach. However, refractory lining is seriously corroded by the SiO2–MgO based slag at 1600 °C during the production process. Different production steps need different atmospheres, the changeable service atmospheres (air and reducing atmosphere) put forward high requirements for slag resistance. The Al2O3–SiC–C castables containing carbon black are usually used in iron runner, which faces high-temperature service condition of 1450 °C–1500 °C. Nevertheless, the function of carbon black in the Al2O3–SiC–C castables at 1600 °C is till essentially unknown. In the current study, the carbon black was introduced to tabular alumina based Al2O3–SiC–C castables to improve corrosion resistance to SiO2–MgO based slag at 1600 °C. The result showed that 0.4 wt% carbon black was suitable for the castables, which the slag resistance of castables was significantly improved. The carbon black had contributed to block slag by wettability resistance. By comparison with the castables without carbon black, the corrosion index and penetration index had been reduced by 20.2% and 28.0%, respectively, under air atmosphere. And there were little corrosion or penetration under reducing atmosphere for castables with 0.4 wt% carbon black. For the mechanical properties, the Al2O3–SiC–C castables with 0.4 wt% carbon black could serve production process although the carbon black impaired the physical properties.  相似文献   

13.
The role of hydrogen in H2-assisted HC–SCR of NO x over Ag–Al2O3 is investigated by XPS and in situ DRIFT spectroscopy. Hydrogen does not reduce the surface silver species to metallic silver, however direct reduction of surface nitrates by hydrogen is observed. It is proposed that one important role of hydrogen is the removal of nitrates from the Ag–Al2O3 surface.  相似文献   

14.
Microsilica addition in Al2O3–MgO and Al2O3–spinel castables helps to improve their flowability and partially accommodate their residual expansion after firing. Nevertheless, there is a lack of conclusive statements in the literature regarding the effects of microsilica on one of the main requisites for steel ladle refractories: corrosion resistance. In the present work, the performance of alumina–magnesia and alumina–spinel with or without microsilica when in contact with a steel ladle slag was evaluated based on three aspects: the material's physical properties, its chemical composition and the microstructural features before the slag attack. According to the attained results, microsilica induced liquid formation and pore growth during sintering, favoring the physical slag infiltration. Moreover, due to this liquid, CA6 was formed in the matrix, mainly for the Al2O3–spinel composition, which also favored the castable dissolution into the molten slag.  相似文献   

15.
Journal of Inorganic and Organometallic Polymers and Materials - This research article focuses on the significant role of Tb2O3 content on the optical properties and radiation shielding performance...  相似文献   

16.
17.
《Ceramics International》2021,47(18):25491-25496
In this study, we developed a novel method for synthesising Al2OC-AlNss using a solid nitrogen source: a Si3N4 mesophase. The two-step sintered Al–Al2O3 and Si3N4–Al–Al2O3 samples were prepared under an atmosphere of nitrogen to investigate the effect of Si3N4 on the formation of Al2OC-AlNss in resin-bonded Al–Al2O3 composites. The samples were investigated via XRD and SEM. The results indicated that the synthesis of Al2OC-AlNss with different morphologies was achieved via the Si3N4 mesophase, and its morphology was influenced by the source of AlN. Both Al2OC-AlNss and Al4O4C were formed in the two-step sintered Al–Al2O3 sample, whereas only Al2OC-AlNss was formed in the two-step sintered Si3N4–Al–Al2O3 sample. Induced by the AlN formed by the nitridation of Al, needle-like Al2OC-AlNss was generated. Compared to that formed by the nitridation of Al, more AlN nuclei were provided by the reaction between Si3N4 and Al. Subsequently, columnar and granular Al2OC-AlNss were formed. Furthermore, fibre-like Al2OC-AlNss was also generated via the VS and VLS mechanism. The reaction model was established in this study.  相似文献   

18.
《Ceramics International》2015,41(8):9947-9956
This work addresses the main aspects related to the use of alternative binders [hydratable (HA) or colloidal alumina (ColAlu)] in castables containing different spinel sources (pre-formed or in situ generated), in order to point out: (i) the features that control the corrosion behavior of these materials, and (ii) the key factors to better select a refractory composition. Thermodynamic calculations, corrosion cup-test and SEM analyses were carried out in order to evaluate the slag attack of the designed refractory compositions. According to the attained results, the alumina-based binders (HA or ColAlu) induced a more effective sintering process due to their high specific surface area, improving the physical properties and the binding level of the generated microstructure. The spinel grain size also played an important role in the corrosion behavior of these refractories, as the finer the particles, the greater their dissolution was into the molten liquid, leading to further precipitation of spinel in the solid–liquid interface as a continuous and thick layer. Among the evaluated compositions and considering the presence of silica fume, the most suitable formulation with optimized corrosion resistance was the one with in situ spinel generation and HA as a binder.  相似文献   

19.
The beneficial effects of adding nanostructured expandable graphite (EG) hybridized yttrium aluminium garnet (EG\YAG) powder as a composite reinforcement in improving the oxidation resistance, hot-strength, and microstructure development in Al2O3–MgO–C refractories were studied. The refractory components reinforced with EG\YAG exhibited more than 60% of oxidation resistance enhancement and as high as 200% increase in hot-strength performance over the standard refractories, formulated without EG\YAG. Correlating the damage parameter (DE) calculations based on ultrasonic measurements with residual strength data (Rc, Rb) showed that there was a progressive increase in Rc and Rb values with consistent reduction in the oxidative damage of EG\YAG reinforced refractories. Analysis indicated that these beneficial features were majorly ascribed to the in-situ development of bimodal microstructure with EG\YAG sintered framework throughout the refractory interior in these new class of reinforced systems. Additionally, the mechanism of toughening and implications of these results to materials design are discussed.  相似文献   

20.
MgO-Al2O3-Cr2O3 ramming mixes made of different raw materials have different mineral structure and different physical properties though with the identical particle size distribution, the same amount of binder and chemical composition. The residual carbon content of the fused magnesia-chrome material made in reducing atmosphere is very high, if this materials is used in the MgO-Al2O3-Cr2O3 ramming mix, it would cause spalling of the furnace lining during drying-out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号