首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unsaponifiable lipids and total fatty acids of a nonphotosynthetic diatom,Nitzschia alba, have been examined. The major fatty acids were found to be 14∶0, 16∶0, 18∶1, and 20∶5; small amounts of 15∶0, 16∶1, 18∶0, 18∶2, 18∶3, and 20∶4 acids also were present. The unsaponifiable lipids consisted mostly of sterols, with only traces (<0.1%) of hydrocarbons (chiefly C16, C18, and C28 normal olefins). The sterols contained brassicasterol (major) and clionasterol (minor), as well as traces of an unidentified sterol; clionasterol was present only in glycosidically bound form.  相似文献   

2.
Uncommoncis andtrans fatty acids can be desaturated and elongated to produce unusual C18 and C20 polyunsaturated fatty acids in animal tissues. In the present study we examined the formation of such metabolites derived fromcis andtrans isomers of oleic and linoleic acids of partially hydrogenated vegetable oil origin in rats. For two months, aduut male rats were fed a partially hydrogenated canola oil diet containing moderately high levels oftrans fatty acids (9.6 energy%) and an adequate level of linoleic acid (1.46 energy%). Analysis of the phospholipid (PL) fatty acids of liver, heart, serum and brain showed no new C18 polyunsaturated fatty acids, except for those uncommon 18∶2 isomers originating from the diet. However, minor levels (each <0.3% PL fatty acids) of six unusual C20 polyunsaturated fatty acids were detected in the tissues examined, except in brain PL. Identification of their structures indicated that the dietary 9c,13t−18∶2 isomer, which is the majortrans polyunsaturated fatty acid in partially hydrogenated vegetable oils, was desaturated and elongated to 5c,8c,11c,15t−20∶4, possibly by the same pathway that is operative for linoleic acid. Furthermore, dietary 12c−18∶1 was converted to 8c,14c−20∶2 and 5c,8c,14c−20∶3; dietary 9c,12t−18∶2 metabolized to 11c,14t−20∶2 and 5c,8c,11c14t−20∶4, and dietary 9t,12c to 11t,14c−20∶2. These results suggested that of all the possible isomers of oleic and linoleic acids in partially hydrogenated vegetable oils, 12c−18∶1, 9c,13t−18∶2, 9c,12t−18∶2 and 9t,12c−18∶2 are the preferred substrates for desaturation and elongation in rats. However, their conversions to C20 metabolites were not as efficient as that of oleic or linoleic acids.  相似文献   

3.
This study examines the biohydrogenation and utilization of the C20 and C22 polyenoic fatty acids in ruminants. Eicosapentaenoic (20∶5n−3) and docosahexaenoic (22∶6n−3) acids were not biohydrogenated to any significant extent by rumen microorganisms, whereas C18 polyenoic fatty acids were extensively hydrogenated. The feeding of protected fish oil increased the proportion of 20∶5 from 1% to 13–18% and 22∶6 from 2% to 7–9% in serum lipids and there were reductions in the proportion of stearic (18∶0) and linoleic (18∶2) acids. The proportion of 20∶5 in muscle phospholipids (PL) increased from 1.5% to 14.7% and 22∶6 from 1.0% to 4.2%; these acids were not incorporated into muscle or adipose tissue triacylglycerols (TAG). In the total PL of muscle, the incorporated 20∶5 and 22∶6 substituted primarily for oleic (18∶1) and/or linoleic (18∶2) acid, and there was no consistent change in the porportion of arachidonic (20∶4) acid.  相似文献   

4.
Wax esters of secondary alcohols constitute 18–20% of the cuticular lipid extract ofMelanoplus packardii and 26–31% of the cuticular lipids ofMelanoplus sanguinipes. The total number of carbons in the wax esters range from 37–54 with 41 predominating in both species. The fatty acids ofM. packardii wax esters are 16∶0, 18∶0, 14∶0, 20∶0 and 12∶0 in decreasing quantity. The fatty acids ofM. sanguinipes wax esters are 18∶0, 20∶0, 16∶0 22∶0, 14∶0, 19∶0 and 17∶0 in decreasing quantity. The secondary alcohols from the wax esters ofM. packardii are C25, C23 and C27 in decreasing quantity, and the secondary alcohols of theM. sanguinipes are C23, C25, C21, C27, C24, C22 and C26 in decreasing quantity. Each secondary alcohol consists of two to four isomers with the hydroxyl group located near the center of the chain. Montana Agriculture Experiment Station, Journal Series No. 332.  相似文献   

5.
Wolff RL  Christie WW  Pédrono F  Marpeau AM 《Lipids》1999,34(10):1083-1097
The fatty acid composition of the seeds from Agathis robusta, an Australian gymnosperm (Araucariaceae), was determined by a combination of chromatographic and spectrometric techniques. These enabled the identification of small amounts of arachidonic (5,8,11,14–20∶4) and eicosapentaenoic (5,8,11,14,17–20∶5) acid for the first time in the seed oil of a higher plant. They were apparently derived from γ-linolenic (6,9,12–18∶3) and stearidonic (6,9,12,15–18∶4) acids, which were also present, via chain elongation and desaturation, together with other expected biosynthetic intermediates [bis-homo-γ-linolenic (8,11,14–20∶3) and bishomo-stearidonic (8,11,14,17–20∶4) acids]. Also present were a number of C20 fatty acids, known to occur in most gymnosperm families, i.e., 5,11–20∶2, 11,14–20∶2 (bishomo-linoleic), 5,11,14–20∶3 (sciadonic), 11,14,17–20∶3 (bishomo-α-linolenic), and 5,11,14,17–20∶4 (juniperonic) acids. In contrast to most other gymnosperm seed lipids analyzed so far, A. robusta seed lipids did not contain C18 Δ5-desaturated acids [i.e., 5,9–18∶2 (taxoleic), 5,9,12–18∶3 (pinolenic), or 5,9,12,15–18∶4 (coniferonic)]. These structures support the simultaneous existence of Δ6- and Δ5-desaturase activities in A. robusta seeds. The Δ6-ethylenic bond is apparently introduced into C18 polyunsaturated acids, whereas the Δ5-ethylenic bond is introduced into C20 polyunsaturated acids. A general metabolic pathway for the biosynthesis of unsaturated fatty acids in gymnosperm seeds is proposed. When compared to Bryophytes, Pteridophytes (known to contain arachidonic and eicosapentaenoic acids), and species from other gymnosperm families (without such acids), A. robusta appears as an “intermediate,” with the C18 Δ6-desaturase/C18→C20 elongase/C20 Δ5-desaturase system in common with the former subphyla, and the unsaturated C18→C20 elongase/C20 Δ5-desaturase system specific to gymnosperms. The following hypothetical evolutionary sequence for the C18 Δ6/Δ5-desaturase class in gymnosperm seeds is suggested: Δ6 (initial)→Δ6/Δ5 (intermediate)→Δ5 (final).  相似文献   

6.
Neurospora crassa incorporated exogenous deuterated palmitate (16∶0) and 14C-labeled oleate (18∶1Δ9) into cell lipids. Of the exogenous 18∶1Δ9 incorporated, 59% was desaturated to 18∶2Δ9,12 and 18∶3Δ9,12,15. Of the exogenous 16∶0 incorporated, 20% was elongated to 18∶0, while 37% was elongated and desaturated into 18∶1Δ9, 18∶2Δ9,12, and 18∶3Δ9,12,15. The mass of unsaturated fatty acids in phospholipid and triacylglycerol is 12 times greater than the mass of 18∶0. Deuterium label incorporation in unsaturated fatty acids is only twofold greater than in 18∶0, indicating a sixfold preferential use of 16∶0 for saturated fatty acid synthesis. These results indicate that the release of 16∶0 from fatty acid synthase is a key control point that influences fatty acid composition in Neurospora.  相似文献   

7.
The fatty acid compositions of the seed lipids from four Ephedra species, E. nevadensis, E. viridis, E. przewalskii, and E. gerardiana (four gymnosperm species belonging to the Cycadophytes), have been established with an emphasis on Δ5-unsaturated polymethylene-interrupted fatty acids (Δ5-UPIFA). Mass spectrometry of the picolinyl ester derivatives allowed characterization of 5,9- and 5,11–18∶2; 5,9,12–18∶3; 5,9,12,15–18∶4; 5,11–20∶2; 5,11,14–20∶3; and 5,11,14,17–20∶4 acids. Δ5-UPIFA with a Δ11-ethylenic bond (mostly C20 acids) were in higher proportions than δ5-UPIFA with a δ9 double bond (exclusively C18 acids) in all species. The total δ5-UPIFA content was 17–31% of the total fatty acids, with 5, 11, 14–20∶3 and 5, 11, 14, 17–20∶4 acids being the principal δ5-UPFIA isomers. The relatively high level of cis-vaccenic (11–18∶1) acid found in Ephedra spp. seeds, the presence of its δ5-desaturation product, 5, 11–18∶2 acid (proposed trivial name: ephedrenic acid), and of its elongation product, 13–20∶1 acid, were previously shown to occur in a single other species, Ginkgo biloba, among the approximately 170 gymnosperm species analyzed so far. Consequently, Ephedraceae and Coniferophytes (including Ginkgoatae), which have evolved separately since the Devonian period (≈300 million yr ago), have kept in common the ability to synthesize C18 and C20 δ5-UPIFA. We postulate the existence of two δ5-desaturases in gymnosperm seeds, one possibly specific for unsaturated acids with a δ9-ethylenic bond, and the other possibly specific for unsaturated acids with a δ11-ethylenic bond. Alternatively, the δ5-desaturases might be specific for the chain length with C18 unsaturated acids on the one hand and C20 unsaturated acids on the other hand. The resulting hypothetical pathways for the biosynthesis of δ5-UPIFA in gymnosperm seeds are only distinguished by the position of 11–18∶1 acid. Moreover, 13C nuclear magnetic resonance spectroscopy of the seed oil from two Ephedra species has shown that δ5-UPIFA are essentially excluded from the internal position of triacylglycerols, a characteristic common to all of the Coniferophytes analyzed so far (more than 30 species), with the possibility of an exclusive esterification at the sn-3 position. This structural feature would also date back to the Devonian period, but might have been lost in those rare angiosperm species containing δ5-UPIFA.  相似文献   

8.
Unsaturated fatty acids of mycobacteria   总被引:4,自引:0,他引:4  
The double bond locations have been determined for the mono-unsaturated fatty acids, C14 to C26 ofM. smegmatis andM. bovis BCG. The 14∶1 and 16∶1 fatty acids fromM. smegmatis are principally Δ10, while the 17∶1, 18∶1 and 19∶1 fatty acids from both organisms are Δ9. In the case ofM. smegmatis, the 20∶1, 22∶1 and 24∶1 fatty acids are principally Δ11, Δ13 and Δ15, respectively, while the 22∶1, 24∶1 and 26∶1 fatty acids of BCG are principally Δ13, Δ15 and Δ17, respectively.  相似文献   

9.
Position 1 of the phospholipid and triglyceride fractions isolated fromMycobacterium smegmatis andM. bovis BCG was esterified principally with C18 related fatty acids (18∶0, 18∶1 and 19Br). Position 2 was occupied principally by C16 fatty acids. The third position of the triglycerides was esterified with a preponderance of C20+fatty acids. Seventysix per cent of position 3 fatty acids in BCG and 43% inM. smegmatis triglycerides contained fatty acids of greater than 20 carbon atoms.  相似文献   

10.
The total lipid fatty acids from the white shrimpPenaeus setiferus were found to contain several unusual dienoic fatty acid species. These included two methylene-interrupted species: Δ11, 14-C18∶2 (18∶2ω4) and δ13, 16-C20∶2 (20∶2ω4). Also found were several non-methylene-interrupted dienoic fatty acids including δ7, 11 and Δ7, 13-C20∶2, Δ7, 13-C21∶2, Δ7, 13, Δ7, 15, Δ9, 13, Δ9, 15, and Δ7, 17-C22∶2. Many minor C20∶2 non-methylene-interrupted dienes were found but could not be unequivocally characterized.  相似文献   

11.
The total lipids and fatty acid composition ofEntomophthora coronata were determined. The fungus was grown on a chemically defined medium and a chemically nondefined medium (Sabouraud dextrose yeast extract) for a period of 26 days. The organism contained from 16.2% to 44.6% total lipids depending upon the days of growth. The major fatty acids were 12∶0 (5.5–9.0%), 13∶0 (1.2–8.2%), 14∶0 (33.5–43.5%), 16∶0 (9.7–13.9%), 18∶19 (20.4–22.4%), and 18∶29,12 (3.5–10.5%). Lesser amounts of 15∶0, 16∶1, 16∶2, 17∶0, 18∶0, two other 18∶2 (both having conjugated double bonds), 18∶36,9,12, another 18∶3 (conjugated double bonds), 20∶38,11,14, 20∶45,8,11,14, another 20∶4 (conjugated double bonds), and 24∶1 acids were found. Trace amounts of 20∶0, 20∶1, 20∶2, 22∶0 and 24∶0 were also present. The relative percentage of most of the fatty acids did not vary appreciably with growth. However, 18∶29,12 and 20∶45,8,11,14 increased with age of the chemically defined culture. Peak E (18∶2, conjugated double bonds) increased and 13∶0 and 18∶36,9,12 decreased with age of the chemically nondefined culture. The fatty acids were predominately saturated (56.9–69.1%) and contained a high percentage of shorter chain fatty acids (C 12 to C 15). The fatty acids of the chemically defined culture were more unsaturated than the Sabouraud culture and the unsaturation increased with age of the culture.  相似文献   

12.
The present study was designed to determine if dietary supply of long-chain fatty acid (LCFA, C20∶4n-6, and/or C22∶6n-3), reflecting levels that might be incorporated into infant formulas, influences the fatty acid composition of the visual cell membrane. The rod outer segment (ROS) of the retina was analyzed from rats fed diets varying in the ratio of 18∶2n-6 to 18∶3n-3 with or without 20∶4n-6 [arachidonic acid (AA)] and 22∶6n-3 (docosahexaenoic acid) from birth to six weeks of age. The level of very long chain fatty acids (VLCFA, C24−C36) was identified using gas chromatography and gas chromatography-mass spectrometry. In the ROS, the highest relative percent of AA was attained in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of animals fed 1% AA diet, whereas feeding 0.7% docosahexaenoic acid (DHA) diet significantly increased the DHA level in PC, phosphatidylserine, and phosphatidylinositol compared to feeding diets containing AA. VLCFA of n-6 and n-3 up to C36 were found in PC, with the most abundant fatty acids being C32 and C34. In PC, phosphatidylserine and PE, the n-6 tetraenoic VLCFA level was highly increased in animals fed 1% AA compared to other dietary groups. This study suggests that dietary fat containing small amounts of AA or DHA is an important factor influencing membrane fatty acid composition of the visual cell during development. Based on a presentation at the AOCS Annual Meeting & Expo in San Antonio, Texas, May 7–11, 1995.  相似文献   

13.
Toru Takagi  Yutaka Itabashi 《Lipids》1982,17(10):716-723
Open-tubular gas chromatographic analysis of fatty acids in the lipids from the seeds of 20 species of Gymnospermae showed that they all contained nonmethylene-interrupted polyenoic (NMIP) acids as minor components and palmitic, oleic, linoleic and α-linolenic acids as major components. The NMIP acids have an additional 5,6-ethylenic bond in ordinary plant unsaturated fatty acids and the following C2 elongation acids:cis-5,cis-9-octadecadienoic acid (5,9–18∶2) (I); 5,9,12–18∶3 (II); 5,9,12,15–18∶4, 5,11–20∶2, 5,11,14–20∶3 (III); and 5,11,14,17–20∶4 (IV). The main NMIP acids found in neutral lipids are I in two species ofTaxus, II in seven species of Pinaceae, III in two species of Podocarpaceae,Torreya nucifera, Cycas revoluta, andGinkgo biloba, and III and IV in each of three species of Taxodiaceae, and Cupressaceae. The polar lipids constitute the minor fraction of seed lipids in general. The content and composition of NMIP acids in these lipids differe considerably from those in neutral lipids. Analysis of the partial cleavage products of triacylglycerols showed that the NMIP acids distribute mainly in the 1,3-position.  相似文献   

14.
Open-tubular gas chromatography was carried out on fatty acids and alcohols obtained from wax esters of the orange roughy,Hoplostethus atlanticus, caught at sea off New Zealand. The major (above 5%) components were 16∶1(n−7), 18∶1(n−9) and (n−7), 20∶1(n−9) and (n−7), and 22∶1(n−11, n−13) as fatty acids, and 16∶0, 18∶0, 18∶1(n−9), 20∶1(n−9) and (n−7), and 22∶1(n−11, n−13) as fatty alcohols. The total percentages of the minor components were 10% in the acids and 26% in the alcohols. The 22∶1/20∶1 ratio of the fatty alcohols obtained in this study was less than 1.0, although the ratio for the Atlantic orange roughy has been reported as being greater than 1.0. The contents of polyenes were as low as 2.48% in the acids and 0.95% in the alcohols, but their compositions showed some specific features. The percentages of the C16−C22 dienes in the total polyenes were remarkably high, 57.7% of these acids and 53.1% of these alcohols. The most important dienes were 18∶2(n−6) in the acids and 20∶2(n−6) in the alcohols.  相似文献   

15.
The Δ5-unsaturated polymethylene-interrupted fatty acid (Δ5-UPIFA) contents and profiles of gymnosperm seeds are useful chemometric data for the taxonomy and phylogeny of that division, and these acids may also have some biomedical or nutritional applications. We recapitulate here all data available on pine (Pinus; the largest genus in the family Pinaceae) seed fatty acid (SFA) compositions, including 28 unpublished compositions. This overview encompasses 76 species, subspecies, and varieties, which is approximately one-half of all extant pines officially recognized at these taxon levels. Qualitatively, the SFA from all pine species analyzed so far are identical. The genus Pinus is coherently united—but this qualitative feature can be extended to the whole family Pinaceae—by the presence of Δ5-UPIFA with C18 [taxoleic (5,9–18∶2) and pinolenic (5,9,12–18∶3) acids] and C20 chains [5,11–20∶2, and sciadonic (5,11,14–20∶3) acids]. Not a single pine species was found so far with any of these acids missing. Linoleic acid is almost always, except in a few cases, the prominent SFA, in the range 40–60% of total fatty acids. The second habitual SFA is oleic acid, from 12 to 30%. Exceptions, however, occur, particularly in the Cembroides subsection, where oleic acid reaches ca. 45%, a value higher than that of linoleic acid. α-Linolenic acid, on the other hand, is a minor constituent of pine SFA, almost always less than 1%, but that would reach 2.7% in one species (P. merkusii). The sum of saturated acids [16∶0 (major) and 18∶0 (minor) acids principally] is most often less than 10% of total SFA, and anteiso-17∶0 acid is present in all species in amounts up to 0.3%. Regarding C18 Δ5-UPIFA, taxoleic acid reaches a maximum of 4.5% of total SFA, whereas pinolenic acid varies from 0.1 to 25.3%. The very minor coniferonic (5,9,12,15–18∶4) acid is less than 0.2% in all species. The C20 elongation product of pinolenic acid, bishomo-pinolenic (7,11,14–20∶3) acid, is a frequent though minor SFA constituent (maximum, 0.7%). When considering C20 Δ5-UPIFA, a difference is noted between the subgenera Strobus and Pinus. In the former subgenus, 5,11–20∶2 and sciadonic acids are ≤0.3 and ≤1.9%, respectively, whereas in the latter subgenus, they are most often ≥0.3 and ≥2.0%, respectively. The highest values for 5,11–20∶2 and sciadonic acids are 0.5% (many species) and 7.0% (P. pinaster). The 5,11,14,17–20∶4 (juniperonic) acid is present occasionally in trace amounts. The highest level of total Δ5-UPIFA is 30–31% (P. sylvestris), and the lowest level is 0.6% (P. monophylla). Uniting as well as discriminating features that may complement the knowledge about the taxonomy and phylogeny of pines are emphasized.  相似文献   

16.
Sreerama Shetty  S. N. Hegde 《Lipids》1991,26(11):930-933
Pigeon “milk” (PM) collected from the crop of 1- to 5-day-old squabs was analyzed to examine whether there were changes in lipid composition during the first week of secretion. The high PM fat content (9–11%) remained fairly constant in the first 5 days of secretion. The mean percentage of neutral lipids, glycolipids and phospholipids was 80, 12 and 8%, respectively. Unlike the content of neutral lipids, glycolipid and phospholipid levels increased significantly between day 1 and day 5 of secretion. Triglycerides, the major neutral lipids, decreased by 24% between day 1 and day 5, while free sterols, monoglycerides and hydrocarbons increased by 8%, 11% and 2.5%, respectively, during the same period; diglycerides and sterol esters, however, remained unchanged. The ratio of saturated to unsaturated fatty acids was 0.27 and it remained unchanged. Medium-chain (C10, C12 and C14) and oddchain (C15 and C17) fatty acid contents were low. Fatty acids longer than C20 were absent. Palmitic acid, the major saturated fatty acid, increased by 42% from day 1 to day 5, whereas stearic acid decreased by 48% during the same period. Oleic acid, the predominant unsaturated fatty acid, also decreased from 51 to 45% between the first and fifth day of PM secretion. Polyunsaturated acids (18∶2, 18∶3 and 20∶4) accounted for 26% and 30% of the total fatty acids on day 1 and day 5, respectively. Although lipid changes in the crop of squabs prior to collection of samples cannot totally be ruled out, the nature of lipid changes is likely to reflect cellular breakdown that precedes PM secretion by parent pigeons.  相似文献   

17.
The fatty acids and nonsaponifiable lipids ofEimeria tenella oocysts were analyzed by gas liquid chromatography and combined gas liquid chromatographymass spectrometry. The fatty acids detected were identified as C14∶0, C16∶0, C16∶1, C18∶0, C18∶1, and C18∶2. Though the wt of the fatty acid fraction decreased during sporulation from 91 μg per 106 oocysts to 47 μg per 106 oocysts, the relative amounts of these fatty acids did not change appreciably. The nonsaponifiable lipids ofE. tenella consisted of cholesterol and unbranched primary alcohols of 22, 24, 26, 28, 30, and 32 carbons. Mass fragmentography demonstrated that each species of alcohol consisted of saturated and monounsaturated derivatives. Trimethylsilyl ethers of fatty alcohols were found to offer several important advantages over free alcohols for mass spectrometric characterization. Before sporulation, most fatty alcohols were in the oocyst wall. During sporulation, the wt of the nonsaponifiable lipids increased from 16 μg per 106 oocysts of 44 μg per 106 oocysts due largely to synthesis of C24 and C26 alcohols. The newly synthesized fatty alcohols were not deposited in the oocyst wall.  相似文献   

18.
The lipid class compositions of adult Pacific oysters [Crassostrea gigas (Thunberg)] were examined using latroscan thin-layer chromatography/flame-ionization detection (TLC/FID), and fatty acid compositions determined by capillary gas chromatography and gas chromatography/mass spectrometry (GC/MS). The fatty acid methyl esters were separated using argentation TLC and also analyzed as their 4,4-dimethyloxazoline derivatives using GC/MS. Major esterified fatty acids inC. gigas were 16∶0, 20∶5n−3, and 22∶6n−3. C20 and C22 nonmethylene interrupted (NMI) fatty acids comprised 4.5 to 5.9% of the total fatty acids. The NMI trienoic fatty acid 22∶3(7,13,16) was also identified. Very little difference was found in the proportions of the various lipid classes, fatty acids or sterols between samples of adult oysters of two different sizes. However, significant differences in some of the lipid components were evident according to the method of sample preparation used prior to lipid extraction with solvents. Lyophilization (freeze drying) of samples led to a significant reduction in the amounts of triacylglycerols (TG) extracted by solvents in two separate experiments (7.0 and 52.5% extracted). Extracts from lyophilized samples had less 16∶0, C18 unsaturated fatty acids, and 24-ethylcholest-5-en-3β-ol, while C20 and C22 unsaturated fatty acids comprised a higher proportion of the total fatty acids. There was no significant change in the amounts of polar lipids, total sterols, free fatty acids or hydrocarbons observed in extracts from lyophilized samples relative to extracts from nonlyophilized samples. Addition of water to the freezedried samples prior to lipid extraction greatly improved lipid yields and resulted in most of the TG being extracted.  相似文献   

19.
Analysis of the hornet’s hemolymph revealed the presence of C16 and C18 fatty acids (70%), which were accompanied by minor quantities (ranging from 0.1% to 0.6%) of the following acids: C10∶0, C11∶0, C12∶0, C13∶0, C14∶0, C15∶0, C16∶0, and C17∶0. The hemolymph of the queen larvae contained more C18∶1 than the hemolymph of the worker larvae, and the percentage of C16∶1 was higher in the fat body and the midgut than in the hemolymph. The significance of these results is discussed.  相似文献   

20.
Extracting long-chain fatty acids from a fermentation medium   总被引:1,自引:0,他引:1  
Several solvents were evaluated for extracting free long-chain FA (LCFA) from a fermentation medium. Chloroform, chloroform/methanol (1∶1), hexane, and hexane/methyl tert-butyl ether (MTBE) (1∶1) were evaluated as alternative extraction solvents. Parameters considered for optimizing LCFA recoveries included pH and ionic strength. Maximal LCFA recoveries were obtained by adding 2 mL of the hexane/MTBE (1∶1) solvent mixture, 80 μL of 50% H2SO4, and 0.05 g NaCl to 1 mL of the aqueous sample and mixing for 15 min at 200 rpm. This method quantified saturated LCFA [capric acid (C10∶0) to stearic acid (C18∶0)] and unsaturated LCFA with 18 carbons [linoleic acid (C18∶2) and oleic acid (C18∶1)] with a 98 to 100% recovery. Caproic (C6∶0) and caprylic (C8∶0) acids were characterized by 27 and 76% recoveries, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号