首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosylation of a number of constituents of human saliva is known to modify its biological roles, such as its lubricating properties and binding of microbial flora. Gillece-Castro et al. [Gillece-Castro, B. L., Prakobphol, A., Burlingame, A. L., Leffler, H. & Fisher, S. J. (1991) J. Biol. Chem. 266, 17358-17368] have proposed that the major glycan on the salivary proline-rich glycoproteins is a trifucosylated biantennary sugar with one difucosylated and one unfucosylated antenna. Furthermore, they proposed that the non-fucosylated antenna mediated adherence to a peridontal pathogen, Fusobacterium nucleatum. The detailed structures and roles of other highly fucosylated glycans that co-exist in the parotid gland are not fully known. In view of the influence of outer-arm fucosylation on carbohydrate recognition processes in general, this paper reports the use of a combination of HPLC (normal and reversed phase), matrix-assisted laser-desorption/ionisation (MALDI) mass spectrometry and exoglycosidase digestions to dissect the detailed structures of the most abundant of these polyfucosylated glycans. For measurement of reversed-phase HPLC retention times, new calibration units were used which paralleled the glucose units used for normal-phase HPLC. These differed in that the difference in retention times were compared with those derived from a ladder of 2-aminobenzamide-labelled arabinose oligomers instead of the corresponding oligomers from partially hydrolysed dextran. Over sixty neutral sugars were identified from the parotid gland and many of these were additionally found substituted with sialic acid (both alpha2-3-linked and alpha2-6-linked) and sulphate. These glycans were mainly bi- and tri-antennary sugars with up to five and seven fucose residues respectively, containing fucose alpha1-3-linked to the outer-arm GlcNAc residues and alpha1-2-linked to the galactose. All fucosylated structures contained a core (alpha1-6-linked) fucose. The detailed structure of the trifucosylated biantennary glycan was confirmed, together with the structures of another 12 fucosylated biantennary glycans. Smaller amounts of hybrid and tetraantennary structures were also found and bisected glycans were shown to be constituents of parotid glycoproteins for the first time. Acidic glycans were mainly substituted with sialic acid. Most were monosialylated as the presence of fucose on the antennae was found to suppress the addition of extra sialic acid moieties. The possible functional significance of highly fucosylated N-glycans is discussed in relation to their modification of the availability of other non-reducing terminal monosaccharides for recognition processes.  相似文献   

2.
The native structures of the Asn-linked oligosaccharides and the O-glycans at Ser126 of human erythropoietin expressed from recombinant BHK cells have been elucidated. Enzymatically released N-glycans were studied by methylation analyses, fast-atom-bombardment mass spectrometry as well as one- and two-dimensional 1H-NMR spectrometry at 600 MHz. Many (82.7%) were found to be tetraantennary N-acetyllactosamine-type (22.8% with one, 3.6% with two and 0.4% with three N-acetyllactosamine repeats) being tetrasialylated (41%), trisialylated (29.6%) and disialylated (12.2%). A few (9.7%; 4.1% 2,4-branched, 5.6%, 2,6-branched) of the chains were triantennary (5.4% trisialyl, 4.3% disialyl) and 4.6% were of the disialyl diantennary type. Almost all of the innermost GlcNAc residues were alpha 1-6 fucosylated and NeuAc was exclusively alpha 2-3 linked to Gal beta 1-4GlcNAc-R; 60% of the protein was found to be O-glycosylated at Ser126; structures were monosialylated (70%) or disialylated (30%) forms of the Gal beta 1-3GalNAc core type. Glycosylation patterns at individual Asn-Xaa-Thr/Ser sites were determined by analytical high-pH anion-exchange chromatography with pulsed amperometric detection. Only tetraantennary chains with 0-3 N-acetyllactosamine repeats were detected at Asn38 and Asn83, while almost all of the di- and triantennary oligosaccharides were attached to Asn24. Batch analysis of different preparations of recombinant erythropoietin revealed the high reproducibility of the production procedure. Structures containing terminal GalNAc-GlcNAc were detected in small amounts in a few batches.  相似文献   

3.
Galactosyltransferase, sialyltransferase, and fucosyltransferase were used to create a panel of complex oligosaccharides that possess multiple terminal sialyl-Le(x) (NeuAc alpha 2-3Gal[Fuc alpha 1-3] beta 1-4GlcNAc) and GalNAc-Le(x) (GalNAc[Fuc alpha 1-3]beta 1-4GlcNAc). The enzymatic synthesis of tyrosinamide biantennary, triantennary, and tetraantennary N-linked oligosaccharides bearing multiple terminal sialyl-Le(x) was accomplished on the 0.5 mumol scale and the purified products were characterized by electrospray MS and 1H NMR. Likewise, biantennary and triantennary tyrosinamide oligosaccharides bearing multiple terminal GalNAc-Le(x) determinants were synthesized and similarly characterized. The transfer kinetics of human milk alpha 3/4-fucosyltransferase were compared for biantennary oligosaccharide acceptor substrates possessing Gal beta 1-4GlcNAc, GalNAc beta 1-4GlcNAc, and NeuAc alpha 2-3Gal beta 1-4GlcNAc which established NeuAc alpha 2-3Gal beta 1-4GlcNAc as the most efficient acceptor substrate. The resulting complex oligosaccharides were chemically tethered through the tyrosinamide aglycone to the surface of liposomes containing phosphatidylthioethanol, resulting in the generation of glycoliposomes probe which will be useful to study relationships between binding affinity and the micro- and macro-clustering of selectin ligand.  相似文献   

4.
The N-linked oligosaccharides of frog (Rana pipiens) rhodopsin were analysed by sequential exoglycosidase digestion and gel filtration chromatography, following reductive tritiation. In addition, selected tryptic glycopeptides obtained from frog retinal rod outer segment membranes were examined by electrospray mass spectrometry (ES-MS), fast atom bombardment mass spectrometry (FAB-MS), amino acid sequence and composition analysis, and carbohydrate composition analysis. The amino acid sequence data demonstrated that the glycopeptides were derived from rhodopsin and confirmed the presence of two N-glycosylation sites, at residues Asn2 and Asn15. The predominant glycan (approximately 60% of total) had the structure GlcNAc beta 1-2Man alpha 1-3(Man alpha 1-6) Man beta 1-4GlcNAc beta 1-4GlcNAc-(Asn), with the remaining structures containing 1-3 additional hexose residues, as reported previously for bovine rhodopsin. Unlike bovine rhodopsin, however, a sizable fraction of the total glycans of frog rhodopsin also contained sialic acid (NeuAc), with the sialylated oligosaccharides being present exclusively at the Asn2 site. FAB-MS analysis of oligosaccharides released from the Asn2 site gave, among other signals, an abundant quasimolecular ion corresponding to a glycan of composition NeuAc1Hex6HexNAc3 (where Hex is hexose and HexNAc is N-acetylhexosamine), consistent with a hybrid structure. The potential biological implications of these results are discussed in the context of rod outer segment membrane renewal.  相似文献   

5.
Five oligosaccharide alpha1-phosphates and one sulfated glycopeptide have been isolated from the hemofiltrate of one patient with end-stage renal disease. Isolation of these compounds has been achieved using reverse osmosis, ion-exchange and size-exclusion chromatography and high performance liquid chromatography. The structures were predominantly elucidated by one- and two-dimensional 1H and 31P NMR spectroscopy. The chemical structures were determined to be: 1 NeuAc alpha2-3Gal alpha1-OPO3H2; 2 NeuAc alpha2-6Galbeta1-4GlcNAc alpha1-OPO3H2; 3 NeuAc alpha2-3Galbeta1-3GalNAc alpha1-OPO3H2; 4 NeuAc alpha2-3Galbeta1-3[NeuAc alpha2-6]GalNAc alpha1-OPO3H2 (proposed structure); 5 Fuc alpha1-2Galbeta1-4[Fuc alpha1-3]GlcNAc alpha1-OPO3H2; 6 HOSO3-4Fuc alpha1-6GlcNAcbeta1-NAsn. While 2 and 3 have been previously characterized as compounds of urine and hemofiltrate, the oligosaccharide alpha1-phosphates 1, 4, and 5 could be isolated--to our knowledge--for the first time from biological material. Compound 6 is the first glycopeptide reported to contain a 4-sulfated fucose residue.  相似文献   

6.
E-selectin binding gangliosides were isolated from myelogenous leukemia HL60 cells, and the E-selectin binding pattern was compared with that of human neutrophils as described in the preceding paper in this issue. The binding fractions were identified as monosialogangliosides having a series of unbranched polylactosamine cores. Structures of fractions 12-3, 13-1, 13-2, and 14, which showed clear binding to E-selectin under the conditions described in the preceding paper, were characterized by functional group analysis by application of monoclonal antibodies, 1H-NMR, FAB-MS, and electrospray mass spectrometry with collision-induced dissociation of permethylated fractions. Fractions 12-3, 13-1, and 13-2 were characterized by the presence of a major ganglioside with the following structure: NeuAc alpha 2-->3Gal beta 1-->4 GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3) GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3)-GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->4 Glc beta Cer. Fractions 12-3 and 13-2 contained, in addition, small quantities (10-15%) of extended SLex with internally fucosylated structures: NeuAc alpha 2-->3 Gal beta 1-->4-(Fuc alpha 1-->3) GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3) GlcNAc beta 1-->3 Gal beta 1-->4 (+/- Fuc alpha 1-->3)GlcNA c beta 1-->3 Gal beta beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->Glc Beta Cer. Fraction 13-1, showing stronger E-selectin binding activity than 12-3 and 13-2, contained only a trace quantity (< 1%) of SLex. Fraction 14, which also showed clear binding to E-selectin, was characterized by the presence of the following structures, in addition to two internally monofucosylated structures (XX and XXI, Table 2, text): NeuAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3Gal beta 1-->4 GlcNAc beta 1-->3 Gal beta 1-->4 GlcNAc beta 1-->3 Gal beta 1-->4 Glc beta Cer; andNeuAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4 (Fuc alpha 1--3)-GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1--4Glc beta Cer. SLex determinant was completely absent. Thus, the E-selectin binding epitope in HL60 cells is carried by unbranched terminally alpha 2-->3 sialylated polylactosamine having at least 10 monosaccharide units (4 N-acetyllactosamine units) with internal multiple fucosylation at GlcNAc. These structures are hereby collectively called "myeloglycan". Monosialogangliosides from normal human neutrophils showed an essentially identical pattern of gangliosides with selectin binding property. Myeloglycan, rather than SLex, provides a major physiological epitope in E-selectin-dependent binding of leukocytes and HL60 cells.  相似文献   

7.
Fibromodulin has been isolated from bovine and equine articular cartilage and the attached keratan sulphate chains subjected to digestion by keratanase II. The oligosaccharides generated have been reduced and subsequently isolated by strong anion-exchange chromatography. Their structures have been determined by high-field 1H-NMR spectroscopy and high-pH anion-exchange chromatography. Both alpha(2-6)- and alpha(2-3)-linked N-acetylneuraminic acid have been found in the capping oligosaccharides, and, fucose which is alpha(1-3)-linked to N-acetylglucosamine has been found as a branch in both repeat region and capping oligosaccharides. These data demonstrate that there are fundamental differences between the structures present in the N-linked keratan sulphate chains attached to fibromodulin from articular cartilage and those from tracheal cartilage, which lack both alpha(2-6)-linked N-acetylneuraminic acid and alpha(1-3)-linked fucose. It has been confirmed that the keratan sulphate chains are short, being only eight or nine disaccharides in length. Very significant differences in the levels of galactose sulphation have been identified at the non-reducing end of the chain. The galactose residue adjacent to the non-reducing cap is sulphated in only 1-3% of chains, compared with a sulphation level of over 40% closer to the reducing end. This highlights the difference between the chain termini and the repeat region in terms of structure and points to the potential for functional importance. The repeat region and capping fragments of the N-linked keratan sulphates from bovine and equine articular cartilage fibromodulin have been found to have the following general structure: NeuAc-(alpha 2-3/6)Gal[6SO3-](beta 1-4)GlcNAc6SO3-(beta 1-3)Gal[6SO3-] (beta 1-4)?[Fuc(alpha 1-3)]0-1GlcNAc6SO3-(beta 1-3)Gal-[6SO3-](beta 1-4)? 6-7GlcNAc6SO3-.  相似文献   

8.
In the present experiments the cDNA coding for a truncated form of the beta1,6N-acetylglucosaminyltransferase responsible for the conversion of linear to branched polylactosamines in human PA1 cells was expressed in Sf9 insect cells. The catalytic ectodomain of the enzyme was fused to glutathione S-transferase, allowing effective one-step purification of the glycosylated 67-74-kDa fusion protein. Typically a yield of 750 microg of the purified protein/liter of suspension culture was obtained. The purified recombinant protein catalyzed the transfer of GlcNAc from UDP-GlcNAc to the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc, converting the acceptor to the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc as shown by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, degradative experiments, and 1H NMR spectroscopy of the product. By contrast, the recombinant enzyme did not catalyze any reaction when incubated with UDP-GlcNAc and the trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Accordingly, we call the recombinant beta1,6-GlcNAc transferase cIGnT6 to emphasize its action at central rather than peridistal galactose residues of linear polylactosamines in the biosynthesis of blood group I antigens. Taken together this in vitro expression of I-branching enzyme, in combination with the previously cloned enzymes, beta1,4galactosyltransferase and beta1, 3N-acetylglucosaminyltransferase, should allow the general synthesis of polylactosamines based totally on the use of recombinant enzymes.  相似文献   

9.
Fucosylated N-linked glycans are important constituents of membrane glycoproteins, owing to their significance as biologically active ligands for several selectins and their role in modulating protein conformation of viral glycoproteins. The human immunodeficiency virus type 1 (HIV-1) glycoprotein contains more than 30 different glycan structures but so far fucose was found associated solely with the innermost GlcNAc of N-linked glycans. In the present report we determined whether fucose units also were linked to the distal GlcNAc via alpha(1-3) or alpha(1-4) linkages in N-linked glycans of gp 120. [3H]-fucose labelled gp 120 was subjected to endoglycosidase F digestion, releasing diantennary complex type N-linked glycans, but leaving the inner polypeptide-bound carbohydrates, GlcNAc and possibly associated fucose units, intact. Gel filtration of the digested material revealed that [3H]-fucose label was released from gp 120 by this treatment, indicating presence of peripheral fucose units. Furthermore, [3H]-focuse label was also released by treatment of the labelled gp 120 with an alpha-L-fucosidase specifically removing fucose in alpha(1-3) and alpha(1-4) linkages. Altogether the results indicated presence of fucose units linked to peripheral GlcNAc of gp 120 N-linked glycans. We have earlier shown that other peripheral carbohydrate determinants, i.e. beta(1-4)-galactose on N-linked glycans, maintain a correct antigenic conformation of gp 120. Using a coupled ELISA system, where changes in antigenic behaviour of a viral glycoprotein were correlated to stepwise elimination of peripheral monosaccharides from N-linked glycans, we found that treatment of gp 120 with a pan-specific alpha-fucosidase as well as an enzyme specific for alpha(1-3)- or alpha(1-4)-linked fucose disclosed a hidden linear epitope situated in the gp 120 C2 region. The effects of the general fucosidase on epitope exposure was more prominent than those obtained with the enzyme with narrow specificity, suggesting that peripheral and inner fucose units co-operate in the maintenance of gp 120 conformation.  相似文献   

10.
Two mannose-binding lectins, Allium sativum agglutinin (ASA) I (25 kDa) and ASAIII (48 kDa), from garlic bulbs have been purified by affinity chromatography followed by gel filtration. The subunit structures of these lectins are different, but they display similar sugar specificities. Both ASAI and ASAIII are made up of 12.5- and 11.5-kDa subunits. In addition, a complex (136 kDa) comprising a polypeptide chain of 54 +/- 4 kDa and the subunits of ASAI and ASAIII elutes earlier than these lectins on gel filtration. The 54-kDa subunit is proven to be alliinase, which is known to form a complex with garlic lectins. Constituent subunits of ASAI and ASAIII exhibit the same sequence at their amino termini. ASAI and ASAIII recognize monosaccharides in mannosyl configuration. The potencies of the ligands for ASAs increase in the following order: mannobiose (Manalpha1-3Man) < mannotriose (Manalpha1-6Manalpha1-3Man) approximately mannopentaose < Man9-oligosaccharide. The addition of two GlcNAc residues at the reducing end of mannotriose or mannopentaose enhances their potencies significantly, whereas substitution of both alpha1-3- and alpha1-6-mannosyl residues of mannotriose with GlcNAc at the nonreducing end increases their activity only marginally. The best manno-oligosaccharide ligand is Man9GlcNAc2Asn, which bears several alpha1-2-linked mannose residues. Interaction with glycoproteins suggests that these lectins recognize internal mannose as well as bind to the core pentasaccharide of N-linked glycans even when it is sialylated. The strongest inhibitors are the high mannose-containing glycoproteins, which carry larger glycan chains. Indeed, invertase, which contains 85% of its mannose residues in species larger than Man20GlcNAc, exhibited the highest binding affinity. No other mannose- or mannose/glucose-binding lectin has been shown to display such a specificity.  相似文献   

11.
By using two different reaction pathways, we generated enzymatically three sialylated and site-specifically alpha 1-3-fucosylated polylactosamines. Two of these are isomeric hexasaccharides Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc and Neu5Ac(alpha 2-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4) GlcNAc, containing epitopes that correspond to VIM-2 and sialyl Lewis (x), respectively. The third one, nonasaccharide Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc, is a sialylated and internally difucosylated derivative of a trimeric N-acetyllactosamine. All three oligosaccharides have one fucose-free N-acetyllactosaminyl unit and can be used as acceptors for recombinant alpha 1-3-fucosyltransferases in determining the biosynthesis pathways leading to polyfucosylated selectin ligands.  相似文献   

12.
A novel saccharide was synthesized by incubating globo-N-tetraose, GalNAc beta1-3Gal alpha1-4Gal beta1-4Glc, and UDP[3H]GlcNAc with hog gastric mucosal microsomes, known to contain beta1,6-N-acetylglucosaminyltransferase activity of a broad acceptor specificity. Chromatography and MALDI-TOF mass spectrometry of the product, as well as the amount of incorporated radioactivity indicated that one [3H]GlcNAc residue was transferred to the acceptor saccharide. One- and two-dimensional 1H NMR-spectroscopic analysis of the product and ESI-CID mass spectrometry of the pentasaccharide in permethylated form established its structure as GalNAc beta1-3([3H]GlcNAc beta1-6)Gal alpha1-4Gal beta1-4Glc. The new enzyme activity possesses substrate specificity features common to a purified beta1,6-GlcNAc-transferase from bovine tracheal epithelium, which forms branches at the subterminal beta1,3-substituted galactose and accepts both GlcNAc- and Gal-configuration at the terminal residue of the acceptor (Ropp et al. (1991) J. Biol. Chem., 266, 23863-23871). The new beta1,6-GlcNAc-branch was readily galactosylated by bovine milk beta1,4-galactosyltransferase, revealing a pathway to novel hybrid type glycans with N-acetyllactosamine chains on globotype saccharides. This pathway may lead to the rare IP blood-group antigen and to globoside-like molecules mediating cell adhesion.  相似文献   

13.
Yeast and most higher eukaryotes utilize an evolutionarily conserved N-linked oligosaccharide biosynthetic pathway that involves the formation of a Glc3Man9GlcNAc2-PP-dolichol lipid-linked precursor, the glycan portion of which is co-translationally transferred in the endoplasmic reticulum (ER) to suitable Asn residues on nascent polypeptides. Subsequently, ER processing glycohydrolases remove the three glucoses and, with the exception of Schizosaccharomyces pombe, a single, specific mannose residue. Processing sugar transferases in the Golgi lead to the formation of core-sized structures (Hex<15GlcNac2) as well as cores with an extended poly-alpha1,6-Man 'backbone' that is derivatized with various carbohydrate side chains in a species-specific manner (Hex50-200GlnNAc2). In some cases these are short alpha1,2-linked Man chains with (Saccharomyces cerevisiae) or without (Pichia pastoris) alpha1,3-Man caps, while in other yeast (S. pombe), the side chains are alpha1,2-linked Gal, some of which are capped with beta-1,3-linked pyruvylated Gal residues. Charged groups are also found in S. cerevisiae and P. pastoris N-glycans in the form of mannose phosphate diesters. Some pathogenic yeast (Candida albicans) add poly-beta1,2-Man extension through a phosphate diester to their N-glycans, which appears involved in virulence. O-Linked glycan synthesis in yeast, unlike in animal cells where it is initiated in the Golgi using nucleotide sugars, begins in the ER by addition of a single mannose from Man-P-dolichol to selected Ser/Thr residues in newly made proteins. Once transported to the Golgi, sugar transferases add one (C. albicans) or more (P. pastoris) alpha1,2-linked mannose that may be capped with one or two alpha1,3-linked mannoses (S. cerevisiae). S. pombe is somewhat unique in that it synthesizes a family of mixed O-glycans with additional alpha1,2-linked Man and alpha1,2- and 1, 3-linked Gal residues.  相似文献   

14.
The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in Gal beta 1, 4GlcNAc beta 1,6(Gal beta 1,3) GalNAc alpha-O-Bn, the enzyme had a higher affinity ( > 3-fold) for the Gal linked to GlcNAc. (q) With respect to Gal beta 1,- 3GlcNAc beta-O-Bn (3.0 mM), fetuin triantennary asialo glycopeptide (2.4 mM), bovine IgG diantennary glycopeptide (2.8 mM), asialo Cowper's gland mucin (0.06 mM), and the acrylamide copolymers (0.125 mM each) containing Gal beta 1,3GlcNAc beta-, Gal beta 1,3(6-sulfo)GlcNAc beta-, Gal beta 1,3GalNAc alpha-, Gal beta 1,3Gal beta-, or Gal alpha 1,3Gal beta- units were 153.6%, 43.0%, 6.2%, 52.5%, 94.9%, 14.7%, 23.6%, and 15.6% active, respectively. (r) Fucosylation by alpha 1,2-L-FT of the galactosyl residue which occurs on the antennary structure of the bovine IgG glycopeptide was adversely affected by the presence of an alpha 1,6-L-fucosyl residue located on the distant glucosaminyl residue that is directly attached to the asparagine of the protein backbone. This became evident from the 4-fold activity of alpha 1,2-L-FT toward bovine IgG glycopeptide after approximately 5% removal of alpha 1,6-linked Fuo.  相似文献   

15.
The structures of glycans N-linked to Arabidopsis proteins have been fully identified. From immuno- and affinodetections on blots, chromatography, nuclear magnetic resonance, and glycosidase sequencing data, we show that Arabidopsis proteins are N-glycosylated by high-mannose-type N-glycans from Man5GlcNAc2 to Man9GlcNAc2, and by xylose- and fucose (Fuc)-containing oligosaccharides. However, complex biantenary structures containing the terminal Lewis a epitope recently reported in the literature (A. -C. Fitchette-Lainé, V. Gomord, M. Cabanes, J.-C. Michalski, M. Saint Macary, B. Foucher, B. Cavalier, C. Hawes, P. Lerouge, and L. Faye [1997] Plant J 12: 1411-1417) were not detected. A similar study was done on the Arabidopsis mur1 mutant, which is affected in the biosynthesis of L-Fuc. In this mutant, one-third of the Fuc residues of the xyloglucan has been reported to be replaced by L-galactose (Gal) (E. Zablackis, W.S. York, M. Pauly, S. Hantus, W.D. Reiter, C.C.S. Chapple, P. Albersheim, and A. Darvill [1996] Science 272: 1808-1810). N-linked glycans from the mutant were identified and their structures were compared with those isolated from the wild-type plants. In about 95% of all N-linked glycans from the mur1 plant, L-Fuc residues were absent and were not replaced by another monosaccharide. However, in the remaining 5%, L-Fuc was found to be replaced by a hexose residue. From nuclear magnetic resonance and mass spectrometry data of the mur1 N-glycans, and by analogy with data reported on mur1 xyloglucan, this subpopulation of N-linked glycans was proposed to be L-Gal-containing N-glycans resulting from the replacement of L-Fuc by L-Gal.  相似文献   

16.
The human H(O) blood group is specified by the structure Fucalpha1-2Galbeta1-R, but the factors regulating expression of this determinant on cell surface glycoconjugates are not well understood. To learn more about the regulation of H blood group expression, cDNA encoding the human H-type GDPFuc:beta-D-galactoside alpha1, 2-fucosyltransferase (alpha1,2FT) was stably transfected into Chinese hamster ovary (CHO) cells. The new cell line, designated CHO(alpha1,2)FT, expressed surface neoglycans containing the H antigen. The structures of the fucosylated neoglycans in CHO(alpha1, 2)FT cells and the distribution of these glycans on glycoproteins were characterized. Seventeen percent of the [3H]Gal-labeled glycopeptides from CHO(alpha1,2)FT cells bound to the immobilized H blood group-specific lectin Ulex europaeus agglutinin-I (UEA-I), whereas none from parental CHO cells bound to the lectin. The glycopeptides from CHO(alpha1,2)FT cells binding to UEA-I contained polylactosamine [3Galbeta1-4GlcNAcbeta1-]n with the terminal sequence Fucalpha1-2Galbeta1- 4GlcNAc-R. Fucosylation of the polylactosamine sequences on complex-type N-glycans in CHO(alpha1, 2)FT cells caused a decrease in both sialylation and length of polylactosamine. Unexpectedly, only small amounts of terminal fucosylation was found in diantennary complex-type N-glycans. The O-glycans and glycolipids were not fucosylated by the H-type alpha1, 2FT. Two major high molecular weight glycoproteins, one of which was shown to be the lysosome-associated membrane glycoprotein LAMP-1, preferentially contained the H-type structure and were bound by immobilized UEA-I. These results demonstrate that in CHO cells the expressed H-type alpha1,2FT does not indiscriminately fucosylate terminal galactosyl residues in complex-type N-glycans, but it favors glycans containing polylactosamine and dramatically alters their length and sialylation.  相似文献   

17.
Human alpha-galactosidase A (alpha-Gal A) is the lysosomal glycohydrolase that cleaves the terminal alpha-galactosyl moieties of various glycoconjugates. Overexpression of the enzyme in Chinese hamster ovary (CHO) cells results in high intracellular enzyme accumulation and the selective secretion of active enzyme. Structural analysis of the N -linked oligosaccharides of the intracellular and secreted glycoforms revealed that the secreted enzyme's oligosaccharides were remarkably heterogeneous, having high mannose (63%), complex (30%), and hybrid (5%) structures. The major high mannose oligosaccharides were Man5-7GlcNAc2 species. Approximately 40% of the high mannose and 30% of the hybrid oligosaccharides had phosphate monoester groups. The complex oligosaccharides were mono-, bi-, 2,4-tri-, 2,6-tri- and tetraantennary with or without core-region fucose, many of which had incomplete outer chains. Approximately 30% of the complex oligosaccharides were mono- or disialylated. Sialic acids were mostly N -acetylneuraminic acid and occurred exclusively in alpha2, 3-linkage. In contrast, the intracellular enzyme had only small amounts of complex chains (7.7%) and had predominantly high mannose oligosaccharides (92%), mostly Man5GlcNAc2 and smaller species, of which only 3% were phosphorylated. The complex oligosaccharides were fucosylated and had the same antennary structures as the secreted enzyme. Although most had mature outer chains, none were sialylated. Thus, the overexpression of human alpha-Gal A in CHO cells resulted in different oligosaccharide structures on the secreted and intracellular glycoforms, the highly heterogeneous secreted forms presumably due to the high level expression and impaired glycosylation in the trans- Golgi network, and the predominately Man5-7GlcNAc2 cellular glycoforms resulting from carbohydrate trimming in the lysosome.  相似文献   

18.
Core fucosylation of N-linked oligosaccharides (GlcNAcbeta1, 4(Fucalpha1,6)GlcNAcbeta1-Asn) is a common modification in animal glycans, but little is known about the distribution of core-fucosylated glycoproteins in mammalian tissues. Two monoclonal antibodies, CAB2 and CAB4, previously raised against carbohydrate epitopes of Dictyostelium discoideum glycoproteins (Crandall, I. E. and Newell, P. C. (1989) Development 107, 87-94), specifically recognize fucose residues in alpha1,6-linkage to the asparagine-bound GlcNAc of N-linked oligosaccharides. These IgG3 antibodies do not cross-react with glycoproteins containing alpha-fucoses in other linkages commonly seen in N- or O-linked sugar chains. CAB4 recognizes core alpha1,6 fucose regardless of terminal sugars, branching pattern, sialic acid linkage, or polylactosamine substitution. This contrasts to lentil and pea lectins that recognize a similar epitope in only a subset of these structures. Additional GlcNAc residues found in the core of N-glycans from dominant Chinese hamster ovary cell mutants LEC14 and LEC18 progressively decrease binding. These antibodies show that many proteins in human tissues are core-fucosylated, but their expression is localized to skin keratinocytes, vascular and visceral smooth muscle cells, epithelia, and some extracellular matrix-like material surrounding subpopulations of lymphocytes. The availability of these antibodies now allows for an extended investigation of core fucose epitope expression in development and malignancy and in genetically manipulated mice.  相似文献   

19.
The structures of the N-linked sugar chains in the PAS-6 glycoprotein (PAS-6) from the bovine milk fat globule membrane were determined. The sugar chains were liberated from PAS-6 by hydrazinolysis, and the pyridylaminated sugar chains were separated into a neutral (6N) and two acidic chains (6M and 6D), the acidic sugar chains then being converted to neutral sugar chains (6MN and 6DN). 6N was separated into two neutral fractions (6N13 and 6N5.5), while 6MN and 6DN each gave a single fraction (6MN13 and 6DN13). The structure of 6N5.5, which was the major sugar chain in PAS-6, is proposed to be Man alpha1 --> 6 (Man alpha1 --> 3) Man beta1 --> 4GlcNAc beta1 --> 4GlcNAc-PA; 6N13, 6MN13 and 6DN13 are proposed to be Gal beta1 --> 3Gal beta1 --> 4GlcNAc beta1 --> 2Man alpha1 --> 6 (Gal beta1 --> 3Gal beta1 --> 4GlcNAc beta1 --> 2Man alpha1 --> 3) Man beta1 --> 4GlcNAc beta1 --> 4 (Fuc alpha1 --> 6)GlcNAc-PA; 6M and 6D had 1 or 2 additional NeuAc residues at the non-reducing ends of 6MN13 and 6DN13, respectively.  相似文献   

20.
Artocarpin, a mannose-specific lectin, is a homotetrameric protein (M(r) 65,000) devoid of covalently attached carbohydrates and consists of four isolectins with pI in the range 5-6.5. Investigations of its carbohydrate binding specificity reveal that among monosaccharides, mannose is preferred over glucose. Among mannooligosaccharides, mannotriose (Man alpha 1-3[Man alpha 1-6]Man) and mannopentaose are the strongest ligands followed by Man alpha 1-3Man. Extension of these ligands by GlcNAc at the reducing ends of mannooligosaccharides tested remarkably improves their inhibitory potencies, while substitution of both the alpha 1-3 and alpha 1-6 mannosyl residues of mannotriose and the core pentasaccharide of N-linked glycans (Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc) by GlcNAc or N-acetyllactosamine in beta 1-2 linkage diminishes their inhibitory potencies. Sialylated oligosaccharides are non-inhibitory. Moreover, the substitution of either alpha 1-3 or alpha 1-6 linked mannosyl residues of M5Gn or both by mannose in alpha 1-2 linkage leads to a considerable reduction of their inhibitory power. Addition of a xylose residue in beta 1-2 linkage to the core pentasaccharide improves the inhibitory activity. Considering the fact that artocarpin has the strongest affinity for the xylose containing hepasaccharide from horseradish peroxidase, which differs significantly from all the mannose/glucose-specific lectins, it should prove a useful tool for the isolation and characterization of glycoproteins displaying such structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号