首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents the ultraviolet–visible spectroscopic properties of Ba3Y2(BO3)4:Ce3+,Tb3+ phosphors prepared by a high‐temperature solid‐state reaction. Under ultraviolet light excitation, tunable emission from the blue to yellowish‐green region was obtained by changing the doping concentration of Tb3+ when the content of Ce3+ is fixed. The efficient energy transfer process between Ce3+ and Tb3+ ions was observed and confirmed in terms of corresponding excitation and emission spectra. In addition, the energy transfer mechanism between Ce3+ and Tb3+ was proved to be dipole–dipole interaction in Ba3Y2(BO3)4:Ce3+,Tb3+ phosphor. By utilizing the principle of energy transfer and appropriate tuning of Ce3+/Tb3+ contents, Ba3Y(BO3)4:Ce3+,Tb3+ phosphors can have potential application as an UV‐convertible phosphor for near‐UV excited white light‐emitting diodes.  相似文献   

2.
A series of color tunable Tb3+‐ and Eu3+‐activated Sr2P2O7 phosphors were synthesized by a traditional solid‐state reaction method in air atmosphere. The crystal structure, photoluminescence (PL) properties, energy transfer, thermal stability, and luminous efficiency were investigated. A series of characteristic emission of Tb3+ and Eu3+ were observed in the PL spectra and the variation in the emission intensities of the three emission peaks at around 416 nm (blue), 545 nm (green), and 593 nm (orange‐red) induced the multicolor emission evolution by tuning the Tb3+/Eu3+ content ratio. The energy‐transfer mechanism from Tb3+ to Eu3+ ion was determined to be dipole–dipole interaction, and the energy‐transfer efficiency was about 90%. The novel phosphors have excellent thermal stability in the temperature range of 77–473 K and the Commission International De L'Eclairage 1931 chromaticity coordinates of Sr2P2O7: Tb3+, Eu3+ex = 378 nm) move toward the ideal white light coordinates.  相似文献   

3.
This work investigated the near‐infrared (NIR) emission properties of mCe3+, xNd3+ codoped Sr3?m?x(Si1?m?xAlm+x)O5 phosphors. Samples with various doping concentrations were synthesized by the high‐temperature solid‐state reaction. Al3+ ions have the ability to promote Ce3+ ions to enter into the Sr2+ sites and to improve the visible emission of Ce3+. Thus the NIR emission of Nd3+ is enhanced by the energy‐transfer process, which occurred from Ce3+ to Nd3+. The device based on these NIR emission phosphors is fabricated and combined with a commercial c‐Si solar cell for performance testing. Short‐circuit current density of the solar cell is increased by 7.7%. Results of this work suggest that the Sr2.95Si0.95Al0.05O5:0.025Ce3+, 0.025Nd3+ phosphors can be used as spectral convertors to improve the efficiency of c‐Si solar cell.  相似文献   

4.
In this study, Sm3+/Tb3+-co-doped NaGd(MoO4)2 phosphors were prepared via the hydrothermal method, with sodium citrate used as a chelator. X-ray diffraction confirmed the structure of the samples, and the test outcomes showed that the phosphors exhibited a body-centered tetragonal structure. Field-emission scanning electron microscopy results showed that the specimen morphology changed with the change in the Cit3?/Re3+ molar ratio. Moreover, the measured temperature-dependent emission spectra showed that Sm3+ and Tb3+ had different quenching trends; thus, the fluorescence intensity ratio can be used to represent temperature. In addition, the outcome of this experiment revealed that the temperature-sensing sensitivity of the phosphors gradually increased with the increasing Cit3?/Re3+ ratio, and the highest sensitivity value was 0.346 K?1 (at 503 K, Cit3?/Re3+ = 2). When the temperature was 298–369 K, the temperature-sensing relative sensitivity increased with increasing Cit3?/Re3+, but in the range 374–503 K, the relative sensitivity decreased with increasing Cit3?/Re3+. The highest relative sensitivity value of the sample was 2.7% K?1 (404 K, Cit3?/Re3+ = 0). Additionally, the Commission International del’Eclairage chromaticity coordinates displayed that the luminous colors of Sm3+/Tb3+-co-doped specimens continuously changed from green to red as the temperature changed.  相似文献   

5.
A reddish orange emission Sr2P2O7:Sm3+ phosphor is prepared by the solid‐state reaction method in air, and the crystal structure and luminescence properties of phosphors are investigated. Sr2P2O7:Sm3+ phosphor shows Commission International de I'Eclairage (CIE) chromaticity coordinates (x = 0.5753, y = 0.4147). White light‐emitting diodes (W‐LEDs) fabricated using Sr2P2O7:Sm3+ phosphor etc. show CIE chromaticity coordinates (x = 0.3471, y = 0.3124). These results indicate that Sr2P2O7:Sm3+ phosphor could be a potential suitable reddish orange emitting phosphor candidate for W‐LEDs with excitation of a ~400 nm n‐UV LED chip.  相似文献   

6.
Using the solid‐state reaction method, Ce3+,Tb3+‐coactivated Si5AlON7 (Si6?zAlzOzN8?z, = 1) phosphors were successfully synthesized. The obtained phosphors exhibit high absorption and strong excitation bands in the wavelength range of 240–440 nm, matching well with the light emitting‐diode (LED) chip. The ET from Ce3+ to Tb3+ ions in Si5AlON7:Ce3+,Tb3+ has been studied and demonstrated by the luminescence spectra and decay curves. Moreover, the phosphors show tunable emissions from blue to green by tuning the relative ratio of the Ce3+ to Tb3+ ions. Thermal quenching properties of Si5AlON7:Ce3+,Tb3+ had also been investigated and the quenching temperature is ~190°C. These results show that Si5AlON7:Ce3+,Tb3+ could be a promising candidate for a single‐phased color‐tunable phosphor applied in UV‐chip pumped LEDs.  相似文献   

7.
A series of newly developed color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors were successfully prepared in this study. The crystal structures of the prepared phosphors were revealed to be hexagonal with space group P63/m, and the lattice parameters were evaluated via utilizing the Rietveld refinement method. Upon excitation at 288 nm, the emission spectra of Ce3+and Tb3+ ions co‐doped Ca3La6(SiO4)6 phosphors included a blue emission band and several emission lines. The blue emission band with a peak at 420 nm originated in the fd transitions of Ce3+ ions, and the emission lines in the range of 450–650 nm were assigned to the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. Increasing the doping content of Tb3+ ions considerably strengthened Tb3+ emission and reduced Ce3+ emission owing to the energy transfer from Ce3+ to Tb3+ ions. The mechanism of the energy transfer was confirmed to be a dipole–dipole interaction. The effective energy transfer from Ce3+ to Tb3+ ions caused a color shift from purplish‐blue to yellowish‐green. Color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors have the potential to be utilized in light‐emitting diodes with proper modulation of the amount of Tb3+ ions.  相似文献   

8.
A series of Ba2B2O5: RE (RE=Ce3+/Tb3+/Sm3+) phosphors were synthesized using high‐temperature solid‐state reaction. The X‐ray diffraction (XRD), luminescent properties, and decay lifetimes are utilized to characterize the properties of the phosphors. The obtained phosphors can emit blue, green, and orange‐red light when single‐doped Ce3+, Tb3+, and Sm3+. The energy can transfer from Ce3+ to Tb3+ and Tb3+ to Sm3+ in Ba2B2O5, but not from Ce3+ to Sm3+ in Ce3+ and Sm3+ codoped in Ba2B2O5. However, the energy can transfer from Ce3+ to Sm3+ through the bridge role of Tb3+. We obtain white emission based on energy transfer of Ce3+→Tb3+→Sm3+ ions. These results reveal that Ce3+/Tb3+/Sm3+ can interact with each other in Ba2B2O5, and Ba2B2O5 may be a potential candidate host for white‐light‐emitting phosphors.  相似文献   

9.
KSr(Gd,Y)(PO4)2: Tb3+ phosphors were synthesized using the high‐temperature solid‐state reaction method. The VUV–UV spectroscopic properties of these phosphors were studied. The results show that efficient energy transfer (ET) from Gd3+ to Tb3+ occurs in this system, and the ET efficiency increases with increasing of Tb3+ doping concentrations, which is evidenced that both the emission intensity and decay time of Gd3+ decreases with increasing Tb3+ doping concentrations. Visible quantum cutting via cross relaxation between the neighboring Tb3+ ions was observed in the high Tb3+ concentration doped sample. In addition, the emission color of KSr(Gd,Y)(PO4)2: Tb3+ phosphors can be tuned from blue to yellowish‐green by varying the doping concentration of Tb3+. Under 147 nm excitation, the sample KSrGd0.5(PO4)2: 0.5Tb3+ exhibits the strongest emission, which is about 70% of the commercial green‐emitting phosphor Zn2SiO4: Mn2+ indicating the potential application of this phosphor for plasma display panels, Hg‐free lamps, and three‐dimensional displays.  相似文献   

10.
Ce3+, Nd3+ codoped (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6 phosphors were synthesized through the high‐temperature solid‐state reaction method. Luminescence spectra, absorption spectra, and decay lifetimes of these samples have been measured to prove the energy‐transfer process from Ce3+ to Nd3+. Under UV and blue light excitation, (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+,Nd3+ phosphors exhibit near‐infrared (NIR) emission, mainly peaking at 1093 nm and secondarily at 916 nm. The NIR emission matches well with the band gap of c‐Si. Results of this work suggest that the (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+, Nd3+ phosphors have potential application as down‐shifting luminescent convertor for enhancing the photoelectric conversion efficiency of c‐Si solar cell.  相似文献   

11.
Dy3+–Tm3+ ions codoped SrMg2La2W2O12 (strontium magnesium lanthanum tungstate) phosphors were synthesized by conventional high‐temperature solid‐state reaction method. X‐ray analysis of the end products revealed the well‐crystallized phases with orthorhombic structure. The functional groups present in the phosphors were studied by the Fourier transform infrared measurements. To know the potential applicability of these phosphors for white light emission, the excitation and emission spectra were recorded. The excitation spectra exhibited an intense broad band at 313 nm, pertaining to the O → W ligand‐to‐metal charge‐transfer state (LMCT) of the host. With the excitation of LMCT band (313 nm), the decay curves of singly doped SrMg2La2W2O12:Dy phosphors exhibited single exponential, where as the codoped SrMg2La2W2O12:DyTm phosphors exhibited double exponential nature. The luminescence colors of these phosphors were estimated from Commission Internationale de L'Eclairage (CIE) coordinates using the photoluminescence data. The color of singly doped SrMg2La2W2O12:Dy phosphor has been tuned by codoping with Tm3+ ions. It has been noticed that the CIE chromaticity coordinates (x,y) determined from the luminescence spectrum of singly Dy3+ doped SrMg2La2W2O12 phosphor shifted toward the white light region, when codoped with Tm3+ ions. The increase in correlated color temperatures (Tcct) has been noticed with the increase of Tm3+ ions concentration in SrMg2La2W2O12:DyTm phosphors.  相似文献   

12.
This article reports the structural and luminescence characteristics of Eu2+‐activated solid solutions of (KSrPO4)1?x·((Ba,Sr)2SiO4)x for 0 ≤ x ≤ 1. These phosphors were prepared by a sol‐gel/Pechini method. The lattice parameters of the solid solutions are linearly dependent on x. The reliability factor from Rietveld analysis is nearly constant and independent of x, indicating KSrPO4·(Ba,Sr)2SiO4 forms an ideal solid solution. The emission spectra consist of two distinct broad bands, which depend on x: blue ranging from 430 to 470 nm and green–yellow ranging from 515 to 570 nm. Both emission peaks red‐shift as x increases due to the crystal field effect and an anomalous transition. The emission intensity of these solid solutions is also a function of x and is comparable to that of LiCaPO4:Eu2+ (QE = 81%) at x = 0.1, suggesting that these color‐tunable solid solutions are promising for applications in solid‐state white lighting.  相似文献   

13.
《Ceramics International》2015,41(6):7766-7772
A series of (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 (0≤x≤0.54) composite phosphors was synthesized in one step by high temperature solid state reaction and the photoluminescence properties were investigated. By means of co-doping Eu3+ and Bi3+ ions into the composite matrices composed of YVO4 and Y2O3 crystals, the YVO4/Y2O3:Eu3+,Bi3+ phosphor exhibits simultaneously the blue (418 nm), green (540 nm) and orange-red (595, 620 nm) emissions. The broad blue and green emissions are attributed to the 3P11S0 transitions of Bi3+ ion both in Y2O3 and in YVO4 matrices. Moreover, the sharp orange-red emissions are attributed to the 5D07F1,2 transitions of Eu3+ ion in YVO4 matrix. By tuning the mole ratio of YVO4/Y2O3 matrices the white light-emitting could be obtained. The results indicated that when the mole ratio of Y2O3 (x) is at 0.11–0.54 mol, the (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 phosphors emit white light by combining the blue, green and orange-red emissions under the excitation of 360–370 nm wavelength which matches the emission of the commercial UV-LED diode. This implies that the phosphors may be the promising white light materials with broad absorption band for white light-emitting diodes.  相似文献   

14.
Sr2SiO4:Sm3+红色荧光粉的发光特性   总被引:1,自引:0,他引:1  
用高温固相法合成了Sr2SiO4:Sm3 红色荧光粉,并研究粉体的发光性质.发射光谱由位于红橙区的3个主要荧光发射峰组成,峰值分别位于570,606nm和653nm,对应了Sm3 的4G5/2→6H5/2,4G5/2→6H7/2和4G5/2→6H9/2特征跃迁发射,606nm的发射最强.激发光谱表现从350 nm到420nm的宽带,可以被近紫外光辐射二极管(near-ultraviolet light-emitting diodes,UVLED)管芯产生的350~410 nm辐射有效激发.研究了Sm3 掺杂和不同电荷补偿剂对样品发光亮度的影响,Sm3 掺杂摩尔分数为6%、电荷补偿剂为Cl-时的效果最好.Sr2SiO4:Sm3 是一种适用于白光LED的红色荧光粉.  相似文献   

15.
李庚申  孙家跃  杜海燕 《精细化工》2005,22(10):732-735
采用燃烧-发泡反应,于不同燃烧环境下,合成了不球磨的铝酸锶铕镝超细长余辉粉体材料。考察了点燃温度、燃烧体系、燃烧液与坩埚体积比、锶与尿素摩尔比以及盖子等因素对产物激发与发射光谱的影响。确定了最佳燃烧条件为:点燃温度600℃,硝酸盐-尿素体系,V(液体)/V(坩埚)=1/10,n(Sr)/n(尿素)=1/12,坩埚加盖。光谱分析表明,燃烧环境不同,产物的激发与发射峰强度不同;温度效应会使发射峰蓝移,压力效应会使发射峰红移,最大频移分别为16 nm和8 nm。  相似文献   

16.
Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The luminescent properties of Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were investigated by using the photoluminescence emission, excitation spectra and reflectance spectra, respectively. The excitation spectra indicate that this phosphor can be effectively excited by near ultraviolet (n-UV) light of 317 nm. Under the excitation of 317 nm, Sr2B2O5:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the fd transition of Ce3+ ions and green emission bands corresponding to the ff transition of Tb3+ ions, respectively. The Reflectance spectra of the Sr2B2O5:Ce3+,Tb3+ phosphors are noted that combine with Ce3+ and Tb3+ ion absorptions. Effective energy transfer occurred from Ce3+ to Tb3+ in Sr2B2O5 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 90%. The phosphor Sr2B2O5:Ce3+,Tb3+ could be considered as one of double emission phosphor for n-UV excited white light emitting diodes.  相似文献   

17.
The Eu2+, M‐codoped(= Ce3+, Mn2+) phosphor powders were prepared by a solid‐state reaction. The addition of Ce3+ in the Eu2+ sites in partially nitridated bredigite‐structure phosphor(CMSN) remarkably enhances the luminescent intensity by ~180% through sensitized luminescence. Dual band emission was observed for Eu, Mn‐codoped CMSN through energy transfer from Eu2+ to Mn2+. Ce3+–Eu2+ and Eu2+–Mn2+ energy‐transfer mechanism was investigated through decay profile analysis using Inokuti–Hirayama model and energy‐transfer parameters are determined. Interaction mechanism was identified as dipole–dipole interaction. In addition, phosphor in glass plates was prepared using the phosphor and its feasibility in white LED application was studied and is presented.  相似文献   

18.
With solid‐state reaction method, series of Y4Si2O7N2:Tb3+ phosphors were prepared under the high‐temperature and high‐pressure conditions. The photoluminescence properties at room and high temperature were investigated. Two groups of emission lines have been observed, which are corresponding to Tb3+ 5D37FJ (J = 6, 5, 4, 3, 2) and 5D47FJ (J = 6, 5, 4, 3) transitions. The physical mechanisms for excitation, emission, concentration quenching, and thermal quenching were investigated. The cross‐relaxation mechanism between the 5D3 and 5D4 emission was investigated and discussed. The Tb–Tb critical distance for cross‐relaxation was calculated to be ~13 Å. The optimum Tb3+ concentration in this phosphor is 15 mol%. The quadrupole–quadrupole interaction dominates the non‐radiative energy transfer between the Tb3+ luminescence centers and causes the concentration quenching. This phosphor shows high thermal stabilities that at 150°C the intensity remains 92% compared with that measured at room temperature. The present work suggests that this Tb3+‐doped Y4Si2O7N2 material is a kind of potential green‐emitting phosphor.  相似文献   

19.
Single‐phase white‐light‐emitting phosphors NaLa9(1?x?y) (GeO4)6O2: xTm3+, yDy3+ (NLGO: xTm3+, yDy3+) have been synthesized by a traditional solid‐state reaction method. The powder X‐ray diffraction (XRD), photoluminescence (PL), PL excitation (PLE) spectra, fluorescence decay curves, chromaticity coordinates, correlated color temperature (CCT), and the cathodoluminescence (CL) properties of the obtained phosphors are measured and discussed in detail. It is discovered that the series samples could be color‐tunable (from blue to yellow) by tuning the doping content of Dy3+ with a fixed Tm3+ content excited at 357 nm and white light (0.341, 0.324) could be obtained with the CCT of 5079 K. A NLGO: 0.01Tm3+, 0.02Dy3+ is studied carefully as representative. The main emissions of Tm3+ (453 nm, 1D23F4) and Dy3+ (478 nm, 4F9/26H15/2; 572 nm, 4F9/26H13/2) make it emit white light with good thermal stability (67% of the initial till 523 K). The energy transfer from Tm3+ to Dy3+ is noticed and further research has been done to explain the enhancement of Dy3+ emission and the excellent thermal stability. It also keeps stable under continuous electron bombardment with high intensity. All of these indicate that it could be a suitable candidate for white‐emitting phosphor applied for near ultraviolet‐white light‐emitting diode (NUV‐WLED) and field‐emission display (FED).  相似文献   

20.
《Ceramics International》2023,49(8):12540-12550
A simply encapsulated, long-range excitation method for white light generation was proposed. Na1.5Y2.5F9: Ce3+, Tb3+, Eu3+ (NYFCTE) glass-ceramics (GCs) were synthesized by the melt-quenching method. The effect of crystallization temperature on the formation of crystallites was analyzed by X-ray diffraction (XRD). The morphology and size of nanocrystals were investigated by transmission electron microscope (TEM). The unit cell diagram of Na1.5Y2.5F9 nanocrystals was drawn. In addition, the luminescence properties of Ce3+, Tb3+, Eu3+ ions-doped Na1.5Y2.5F9 GCs were tested and analyzed. The sample NYFCTE2 emits bright white light when excited by a 320 nm light source at a distance from the light source. The NYFCTE2 sample obtained white light with Commission Internationale de L'Eclairage (CIE) coordinate of (0.3110, 0.3472), Correlated Color Temperature (CCT) of 6467.72 K, and reliable thermal stability. The above results indicate that the proposed white light generation method and NYFCTE GCs have immense application prospects for illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号