首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(2):1633-1641
In this project, magnesia-alumina composite granules were prepared via the spray drying method. Next, the synthesized powder was sintered at 1400 °C–1500 °C by the spark plasma sintering method under the pressure of 100 MPa without using any sintering aids. The effects of two sintering temperatures (1400 °C and 1500 °C) on the phase evolution, density, fracture toughness, and light transmission of the samples in the visible and IR range were investigated. SEM results indicated that the magnesia-alumina composite granules had spherical morphology with a mean particle size of 7-8 μm. The XRD pattern showed that after spark plasma sintering at 1400 °C and 1500 °C, magnesium aluminate phase spinel was obtained from the penetration and reaction of alumina and magnesia nanoparticles. The disc sintered at 1400 °C had more transparency than the sample sintered at 1500 °C within the UV–Vis and middle IR region because of the lower porosity of the sample. The magnesium aluminate spinel sintered at 1400 °C had a density of 99.98% theoretical density, hardness of 18 GPa, and fracture toughness of 1.6 MPam1/2.  相似文献   

2.
Conventional sintering techniques of yttria-tetragonal zirconia polycrystals (Y-TZP) ceramics have presented limitations regarding the sintering time and temperature, increasing the cost of the final dental and biomedical products. Herein, microwave sintering comes to be an interesting alternative by providing fast heating, high densification, and grain-size control. The aim of this study was to compare the effect of microwave sintering of Y-TZP dental ceramics prepared from a pre-sintered commercial block and produced from powders synthesized in a laboratorial scale by the precipitation route. The synthetized and commercial discs were submitted to microwave sintering at 1450°C and 1350°C for 15, 30, and 60 minutes. Densification, fracture toughness, grain size, and crystalline phase quantification of the sintered groups were evaluated. Both synthetized and commercial groups sintered at 1450°C for 15 and 30 minutes showed the higher densification results (98% TD). XRD quantitative phase analysis indicates that samples present 89% tetragonal and 11% cubic phases, except for the group prepared from coprecipitated powders sintered at 1450°C for 30 minutes, that presented 79% and 21% of tetragonal and cubic phases. The microwave sintering at 1450°C allows hardness and fracture toughness values comparable to conventional sintering.  相似文献   

3.
《Ceramics International》2020,46(15):23910-23921
The development of cordierite ceramics, using traditional materials and conventional methods, remains a key challenge because of the high and narrow sintering temperature range. In this work, single-phase cordierite ceramics were produced by spark plasma sintering nano-oxide powders, at low temperatures. A starting mixture of Al2O3, SiO2, and MgO nano-powders with the composition of stoichiometric cordierite was first sonicated, then, sintered in the temperature range 900–1200 °C. The raw powders, sonicated powder mixture, phase transformations, and fracture surface of sintered specimens were characterized by using an x-ray diffractometer and a field emission scanning electron microscope (FE-SEM). The hardness and fracture toughness were measured using the indentation technique. The influence of testing conditions, process parameters, characterization technique, and calculation method on hardness and fracture toughness was investigated. The FE-SEM images, x-ray maps, and EDS results revealed the homogeneity and stoichiometry of the sonicated powder and sintered samples. Highly pure α-cordierite was formed at 1150 °C. Samples that were sintered at 1150 and 1200 °C had bulk density of 2.58 g/cm3 (relative density of 100%), and maintained low average grain sizes of 28.68 and 34.95 nm, respectively. With the decrease in the temperature from 1200 to 1150 °C, the hardness of cordierite was slightly increased from 8.25 ± 0.158 to 8.46 ± 0.188 GPa, the fracture toughness was marginally improved from 2.2 ± 0.158 to 2.25 ± 0.238 MPa mm1/2, and the critical strain energy release rate was raised from 32.46 to 33.95 J/m2.  相似文献   

4.
High‐energy shaker milling of hexagonal boron nitride (hBN) powders was used to produce powders rich in sp3 bonding. The powders contained up to 68% sp3 bonding and were found to nucleate nanosize cBN grains during consolidation at 5.5 GPa and 1400°C. The effect of hBN starting particle size, milling time, and powder‐to‐milling ball ratio were studied. The amount of sp3 bonding for milled hBN powders was determined, using 11B solid‐state NMR. The milled material was also analyzed by XRD, Raman spectroscopy, and HRTEM. The results indicate that the material has a nanosized microstructure comprised of a disordered hBN matrix and cBN nuclei in the form of sp3‐rich domains. Eight different milled powders were produced and consolidated at pressures of either 5.5 or 6.5 GPa and temperatures of either 1400°C or 1450°C into 12 mm diameter and 5 mm thick pellets. Consolidated pellets formed from milled hBN with 68% sp3 bonding had Vickers hardness of 42 ± 1 GPa and fracture toughness 3.8 ± 0.1 MPa.m1/2. Vickers hardness of 49 ± 1 GPa and fracture toughness of 4.6 ± 0.1 MPa.m1/2 was achieved with a precursor that contained milled hBN and 50 vol. % of 0.5 μm diameter cBN crystals.  相似文献   

5.
With coal gangue and high alumina refractory solid wastes as raw materials, needle-like mullite powder, with an average diameter of about 1 μm, was synthesized at 1300°C by using the conventional solid-state reaction method. Mullite ceramics were derived from the inexpensive needle-like powder. Phase composition was examined by using X-ray diffraction (XRD), while morphologies of the ceramics were observed by using scanning electron microscopy. The content and distribution of elements in the sintered samples were characterized with energy dispersive spectrometer and X-ray fluorescence spectroscopy. Mechanical properties of the mullite ceramics were studied by using the three-point bending method. The aspect ratio of the needle-like mullite particles was up to 6. The mullite sample sintered at 1500°C for 3 hours had a density of 2.515 g·cm−3, which was slightly lower than the theoretical density. Maximum fracture toughness and bending strength of the mullite ceramics were 1.82 MPa·m1/2 and 71.76 MPa, respectively. This study realizes the resource utilization of gangue and high alumina refractory solid wastes, and the prepared mullite ceramics have good application prospect.  相似文献   

6.
Two different preparation routes were applied to process WC-MgO composites with varying MgO contents (4.1 wt.% and 5.9 wt.% MgO). WC-MgO powder mixtures were synthesized by a milling process at 600 rpm for 6 h of partially oxidized WC (WC + WO3), Mg3N2 and C. Alternatively, WC and MgO as initial powders were used. For consolidation of the powder mixtures the field-assisted sintering technology (FAST) was used. X-ray diffraction shows that samples out of different powder mixtures and sintered between 1600 °C and 1750 °C exhibited WC, MgO and the W2C phase independent of the preparation route of the powder mixtures. A higher density and better mechanical properties (hardness and indentation fracture toughness) of WC-MgO were achieved of pure WC and MgO as initial powders were consolidated by FAST. It was found that a lower MgO content results in higher hardness values and in a slightly decreased indentation fracture toughness.  相似文献   

7.
In this work, hydroxyapatite (HA) powders were synthesized using calcium hydroxide Ca(OH)2 and orthophosphoric acid H3PO4 via wet chemical precipitation method in aqueous medium. Calcium‐to‐phosphorus (Ca/P) ratio was set to 1.57, 1.67, 1.87 that yield calcium‐deficient HA, stoichiometric HA, and calcium‐rich HA, respectively. These synthesized HA powders (having different Ca/P ratio) were characterized in terms of particle size and microstructural examination. Then, the densification and mechanical properties of the calcium‐deficient HA, stoichiometric HA, and calcium‐rich HA were evaluated from 1000 to 1350°C. Experimental results have shown that no decomposition of hydroxyapatite phase was observed for stoichiometric HA (Ca/P = 1.67) and calcium‐deficient HA (Ca/P = 1.57) despite sintered at high temperature of 1300°C. However, calcium oxide (CaO) was detected for calcium‐rich HA (Ca/P = 1.87) when samples sintered at the same temperature. The study revealed that the highest mechanical properties were found in stoichiometric HA samples sintered at 1100–1150°C, having relative density of ~99.8%, Young's modulus of ~120 GPa, Vickers hardness of ~7.23 GPa, and fracture toughness of ~1.22 MPam1/2.  相似文献   

8.
Multicomponent transition metal boride composite–sintered bodies were prepared by spark plasma sintering, and the composite sintered bodies prepared at different sintering temperatures (1500–1900°C) were characterized. The experimental results showed that several other compounds diffused into the TiBx phase at lower sintering temperatures under the combined effect of temperature and pressure due to the nonstoichiometric ratio of TiB1.5 vacancies. When the temperature reached 1900°C, only the hexagonal phase remained. With the continuous increase of sintering temperature, the Vickers hardness and fracture toughness of the sintered bodies had a trend of increasing first and then decreasing, due to the continuous reduction of the porosity of the cross section of the sintered bodies and the growth of the grain size. The Vickers hardness and fracture toughness of sintered body obtained at 1800°C are the best, which are 24.4 ± 1.8 GPa and 5.9 ± 0.2 MPa m1/2. At 1900°C, the sintered body was a single-phase hexagonal high-entropy diboride. Its Vickers hardness and fracture toughness were 21.9 ± 1.5 GPa and 5.4 ± 0.2 MPa m1/2, respectively; it showed a clear downward trend.  相似文献   

9.
Transparent MgO ceramics are successful fabricated via spark plasma sintering at lower temperature using the high sintering activity powders synthesized by precipitated method. The samples were detected by XRD, SEM, TEM, BET, UV-Vis-NIR, microhardness, and so on. The results show that all ceramics prepared at 700°C-900°C are visually transparent and the sample sintered at 860°C for 5 min exhibits the superior transmittance of 60% (800 nm). It is also found that the mechanical and thermal properties of MgO ceramics are all increasing firstly and then decreasing with the increase in the sintering temperature. And the maximum value of hardness, fracture toughness, MSP strength, and Young's modulus of MgO ceramics is 8.25 GPa, 2.01 MPa·m1/2, 206 MPa, and 286 GPa, respectively. Moreover, the thermal conductivity of MgO ceramics sintered at 860°C can reach 48.4 W/mK at room temperature.  相似文献   

10.
Lanthanide orthophosphate ceramics with monazite structure gained broad interest for several industrial applications. The crystallization processes, compressibility and sinterability of monazite-type lanthanum orthophosphate powder hydrothermally synthesized at 200 °C as well as mechanical properties of the sintered compacts were investigated. Based on a combination of thermo- and surface area analyses, X-ray diffraction as well as scanning electron microscopy studies it was found that the crystallization process occurs at ∼500 °C and the final crystallization of LaPO4 monoclinic phase takes place at 1400 °C. The sintered pellets are characterized by a density of 98% of theoretical density, a Vickers hardness of 5.7 ± 0.1 GPa and fracture toughness of 1.4 ± 0.1 MPa m0.5.  相似文献   

11.
(Ti,Zr)B2 - (Zr,Ti)C ceramics were synthesized by reactive hot-pressing and solid solution coupling effect using ZrB2 and TiC powders as starting materials. Effects of sintering temperature on phase relations, microstructure and mechanical properties were reported. The equimolar ZrB2 and TiC reactants ensured a complete in situ reaction to form (Ti,Zr)B2 and (Zr,Ti)C solid solutions. The (Ti,Zr)B2 - (Zr,Ti)C composite sintered at 1750°C was fully densified, and exhibited a high hardness of 29.1 GPa due to fine-grain hardening and solid solution hardening. The optimized comprehensive mechanical properties such as a hardness of 27.9 GPa, a strength of 705 MPa and an indentation fracture toughness of 5.3 MPa m1/2 were achieved in (Ti,Zr)B2 - (Zr,Ti)C composites sintered at 1800°C for 1 hour.  相似文献   

12.
Ultra-high-temperature ceramic composites of ZrB2 20 wt%SiC were pressureless sintered under an argon atmosphere. The starting ZrB2 powder was synthesized via the sol–gel method with a small crystallite size and a large specific surface area. Dry-pressed compacts using 4 wt% Mo as a sintering aid can be pressureless sintered to ∼97.7% theoretical density at 2250°C for 2 h. Vickers hardness and fracture toughness of the sintered ceramic composites were 14.82±0.25 GPa and 5.39±0.13 MPa·m1/2, respectively. In addition to the good sinterability of the ZrB2 powders, X-ray diffraction and scanning electron microscopy results showed that Mo formed a solid solution with ZrB2, which was believed to be beneficial for the densification process.  相似文献   

13.
The impact of weak stoichiometry variations on β-TCP sintering behaviour was studied. β-Tricalcium phosphate (β-TCP) powders were synthesised by chemical precipitation through aqueous solution of diammonium phosphate and calcium nitrate. Excess or deficiency of nitrate salt leads to compositions with Ca/P ratios below or over 1.5. These powders, calcined at various temperatures (800–950 °C), were shaped by slip casting process and sintered at 1100 °C. The microstructure, phase composition, specific surface area and density of powders and sintered compacts were analysed by SEM, XRD, FTIR, BET, Archimedes methods and dilatometry.This study shows that the presence of calcium pyrophosphate or the hydroxyapatite phases affects considerably the physical characteristics of the β-TCP powders and in particular specific surface area and consequently their sinterability.A precise determination of the β-TCP chemical composition after synthesis allows to adapt the calcination temperature of the raw powder in order to obtain a maximum densification of the compact. The beneficial role of small quantity of HA phase inside β-TCP powder on their sinterability was also shown in this work.  相似文献   

14.
《Ceramics International》2022,48(4):4754-4762
Four different alumina content of mullite ceramics were fabricated by powders synthesized using the sol-gel method. The synthesis process of powders, microstructure evolution, mechanical and optical properties of the mullite ceramics were studied. The XRD results showed that the precursors transformed into aluminosilicate spinel phase at 1000 °C and mullite phase at 1200 °C. Equiaxial grains were easy to form in the alumina-rich mullite ceramics while elongated grains were easy to form in the alumina-poor mullite ceramics. With the increase of alumina content, the grain size of the samples firstly increased and then decreased, the number of elongated grains decreased while equiaxed grains increased. The flexural strength, compression strength, fracture toughness, and Vickers hardness all decreased firstly and then increased. While the infrared transmittance increased firstly and then decreased. The transmittance at 4 μm (thickness of 0.75 mm) of the ceramics containing 66mol% Al2O3 reached the highest (72%) when sintered at 1780 °C because of the equiaxial grains.  相似文献   

15.
《Ceramics International》2023,49(15):24852-24860
Zirconia ceramic (3Y-TZP) feedstocks with solid loadings from 50 vol% to 68 vol%, in a 60:40 paraffin wax to LDPE ratio binder system, were prepared and printed using a screw-based material extrusion printer. A two-step debinding process involving solvent debinding (cyclohexane + ethanol) and thermal debinding (140 °C–600 °C at 0.2 °C/min) followed by sintering at 1500 °C for 2 h was employed. Tests performed include TGA, density test, Vickers hardness and fracture toughness, XRD, and SEM. The TGA result showed two significant drops in weight starting at 180 °C and 380 °C, which corresponds to the decomposition of paraffin wax and LDPE, respectively. A minimum of 40 wt% of soluble binder was removed from the green sample after solvent immersion for 3 h at 40 °C for solid loadings ≥55 vol%. High solid loading feedstocks produced samples with comparable density, Vickers hardness and fracture toughness, which are 97.5%, ∼12.3 GPa, and ∼5.5 MPa m1/2, respectively; while XRD and SEM shows no adverse tetragonal to monoclinic phase transformation and grain growth, respectively. This study demonstrates that 3D printing of granular 3Y-TZP ceramic feedstock via screw-based material extrusion technique is feasible even with high solid loadings, which is usually difficult to fabricate into flexible filaments and print due to high viscosity.  相似文献   

16.
《Ceramics International》2022,48(21):31661-31671
The improper disposal of industrial wastes causes environmental pollution so their recycling for fabrication of new products became an interesting research issue. In this work, sintered mullite-containing ceramics were prepared from aluminum dross and silica fume (up to 40 wt%) waste materials after sintering up to 1500 °C. Before sintering, the starting waste materials were converted into nano powders by mechanical milling alloying method up to 15 h. The obtained waste nano powders were investigated using different techniques as X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). On the other hand, phase identification by XRD, physical properties determination (bulk density and apparent porosity), microstructure by SEM, mechanical and electrical properties of sintered bodies were investigated. The results revealed that mullite phase was formed in higher amounts with increasing both sintering temperature (1500 °C) and silica fume content. At 1300 °C, amorphous mullite was formed in addition to the alumina phase. It is also noted that the apparent porosity and bulk density were reduced with increasing silica content. However, they exhibited opposite trend when the temperature increased from 1300 into 1500 °C. Moreover, with increasing the mullite content, the microhardness, compressive strength, Younges modulus and electrical conductivity were decreased and reached 10.2 GPa, 216.9 MPa, 119.7 GPa and 4.9 × 10 ?12 S/m, respectively, for the sample that contained higher amount of mullite, while the fracture toughness was improved and reached to 3.44 MPa m0.5.  相似文献   

17.
《Ceramics International》2020,46(17):26784-26789
Effect of sintering temperature on the physical and mechanical properties of synthesized B-type carbonated hydroxyapatite (CHA) over a range of temperature in CO2 atmosphere has been investigated. The B-type CHA in nano size was synthesized at room temperature by using a direct pouring wet chemical precipitation method. The synthesized CHA powders were subsequently consolidated by sintering treatment from 800 to 1100 °C. The sintered CHA samples were evaluated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, X-ray fluorescence (XRF), carbon-hydrogen-nitrogen-sulfur-oxygen (CHNS/O) elemental analyzer, Field emission scanning electron microscopy (FESEM), and Vicker's indentation technique. The results obtained from XRD and FESEM indicated that the synthesized B-type CHA powders were nanometer in size. The crystallinity and crystallite size of the sintered CHA samples were increased due to increasing sintering temperature. The heat treatment between 800 °C and 1000 °C has resulted in coarsening and increased hardness of the sintered CHA samples. However, these properties began to deteriorate when sintering beyond 1100 °C due the formation of calcium oxide.  相似文献   

18.
The effects of initial powder size on microwave‐assisted sintering (MWS) were investigated. BaTiO3 powders with an average particle size of 50, 100, and 500 nm were prepared and sintered with MWS and conventional heating‐based sintering (CS). Samples of the 50 ‐ and 100‐nm‐sized BaTiO3 powders were mechanically milled to study the effects of powder crystallinity on microwave absorption during the MWS process. The MWS of the 50‐nm‐sized BaTiO3 powder resulted in a relative mass density of more than 90% when sintered at 1050°C, whereas the same density was achieved at 1200°C with CS. This difference between the optimal sintering temperatures, which is caused by the absorption of microwaves, was not observed when the 500‐nm‐sized BaTiO3 powder was used. The sinterability of the BaTiO3 ceramics prepared through the MWS of mechanically milled, 50‐nm‐sized powders decreased with increasing milling time. However, the sinterability was much higher than that of the BaTiO3 ceramics prepared through the MWS of the 100‐ and 500‐nm‐sized unmilled powders. In conclusion, microwave absorption has significant effects on the sintering behavior of ~50‐nm‐sized powders, but is negligible for 500‐nm‐sized powders.  相似文献   

19.
《Ceramics International》2017,43(2):1975-1979
Dy2TiO5 powders were synthesized by molten salt and solid-state methods. The influences of molten medium on phase compositions and microstructures were analyzed. The addition of molten salt lowered significantly the synthesis temperature and resulted in uniform powders. Green bodies compacted from the prepared powders were pressureless sintered at 1600 °C. Sinterability, mechanical properties and neutron absorption performance of the sintered pellets were studied. Results showed that molten salt synthesis resulted in materials with higher fracture toughness and bending strength, excellent hardness and neutron adsorption performance compared to the solid-state process. The neutron absorption rate reached 86.6% for 8 cm thick pellets.  相似文献   

20.
Tungsten carbide (WC) with different amounts of Cubic boron nitride (cBN) were synthesized by High Pressure-High Temperature (HPHT) method. The mapping correlation between thermodynamic condition, cBN addition, and microstructure, mechanical properties of WC–cBN composites was established and analyzed by response surface methodology. The main factors affecting the properties of composites were identified by ANOVA. The optimum thermodynamic condition was calculated. It was found that a minor phase transformation of cBN into the low-hardness hBN occurred at a temperature of 1300 °C and intensified at 1500 °C. The homogeneously dispersed cBN particles in the WC matrix promoted an improvement of hardness and fracture toughness, but the phase transition of cBN and its truss effect can dramatically reduce the mechanical properties. The Vickers hardness and fracture toughness of the well-sintered WC-cBN bulks reached a high value of 34 GPa and 13.6 MPa·m1/2, which are improved by 17% and 52% respectively compared with the pure WC samples sintered under similar high-pressure level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号