首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study systematically investigated the structural, dielectric, and ferroelectric properties of BaAl(2−2x)(Mg0.5Ti0.5)2xO4 ceramics in the 0 ≤ x ≤ 0.04 range. Single-phase solid solutions in the P63 space group with hexagonal crystal symmetry were confirmed in the composition range of 0 ≤ x ≤ 0.03. The bond lengths of Al1/(Mg,Ti)–O, Al2/(Mg,Ti)–O, and Al3/(Mg,Ti)–O increased with the increase in x, as confirmed through the Rietveld refinement and evolutions of corresponding modes in Raman spectra. The temperature stability of dielectric properties improved at a composition around x = 0.03, and the dielectric constant εr ascended with the increase in x. Ultrabroad temperature stability (−100°C to 700°C) was obtained, and an optimal combination (εr = 18.5, tan δ < 10−3, −22 ppm/°C ≤ TCC ≤ +20 ppm/°C, resistivity ~4.5 × 1014 Ω·cm) was achieved for the x = 0.03 ceramic sintered at 1260°C in air for 6 hours. The increase in stability was ascribed to the variations in axial bonds, and lattice distortions were determined through high-resolution transmission electron microscopy. The x = 0.03 ceramic could be a promising candidate for C0G or NP0 multilayer ceramic capacitors because of its low loss, high reliability, superior insulating properties and comparatively low-cost raw materials.  相似文献   

2.
(Mg1?xZnx)Al2O4 transparent ceramics were fabricated by spark plasma sintering technique at 1325°C for 10 min. A small mount of Zn2+ addition to MgAl2O4 ceramics was very effective to the performance improvement, while further increase in Zn‐doped content would give rise to the optical transmittance deterioration. The optical and microwave dielectric properties of MgAl2O4 transparent ceramics were improved by Zn substitution for Mg. The in‐line transmittance of the (Mg1?xZnx)Al2O4 (= 0.02) ceramics can be as high as 70% at λ = 550 nm and 86.5% at λ = 2000 nm, respectively. The dielectric constant εr of (Mg1?xZnx)Al2O4 just varied from 8.32 to 8.54, however, the Q × f value increased significantly up to a maximal value of 66,000 GHz at = 0.02. Moreover, the τf of (Mg1?xZnx)Al2O4 transparent ceramics changed from ?74 to ?65.5 ppm/°C. With the increasing of Zn‐doped content, the average grain size and the porosity increased, which was the primary reason for the change in optical and microwave dielectric properties.  相似文献   

3.
Effects of Mg substitution on order/disorder transition, microstructure, and microwave dielectric characteristics of Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics have been investigated. The ordered complex perovskite solid solutions are obtained in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics (x = 0, 0.1, 0.2, and 0.3), and the ordering degree in the as‐sintered dense ceramics increases with increasing Mg‐substitution amount. The significantly improved Qf value is obtained in the present ceramics with increasing x, whereas the dielectric constant decreases slightly together with some increase of temperature coefficient of resonant frequency. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3: εr = 33.7, Qf = 93 800 GHz, and τf = 9.6 ppm/°C. In the Mg‐substituted compositions, clear domain boundaries are obtained and the domain size increases as x increases, the highest Qf value is obtained when the domain size is about 40–60 nm in the ceramics with x = 0.3. The increased ordering degree and the fine ordering domain structure are considered to primarily contribute to the significant increase of Qf value in the Mg‐substituted Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics.  相似文献   

4.
A novel system Li3Mg2(Nb(1−x)Mox)O6+x/2 (0 ≤ x ≤ 0.08) microwave dielectric ceramics were fabricated by the solid-state method. The charge compensation of Mo6+ ions substitution for Nb5+ ions was performed by introducing oxygen ions. The X-ray diffraction patterns and Rietveld refinements indicated Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with single phase and orthorhombic structure. Micro-structure and density confirmed that the grain of Li3Mg2(Nb(1-x)Mox)O6+x/2 ceramics grew well. In addition, the permittivity of Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with the same trend as density decreased slightly with increasing Mo6+ ions content. However, the Q*f and τf were obviously improved with an appropriate amount of Mo6+ ions. When x ≤ 0.04, the Q*f was closely related to the bond valence of samples, while when x ≥ 0.06, the Q*f was closely related to the density of samples. The variations of τf and oxygen octahedral distortion were the opposite. In conclusions, the Li3Mg2(Nb0.98Mo0.02)O6.01 ceramic sintered at 1200°C for 6 hours exhibited outstanding properties: εr ~ 15.18, Q*f ~ 116 266 GHz, τf ~ −15.71 ppm/oC.  相似文献   

5.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

6.
Ceramics in the solid solution system, (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3, were prepared by a conventional mixed oxide route. Single‐phase perovskite‐type X‐ray diffraction patterns were observed for compositions x < 0.6. A change from tetragonal to single‐phase cubic X‐ray patterns occurred at x ≥ 0.1. Dielectric measurements indicated relaxor behavior for x ≥ 0.1. Increasing the Bi(Mg0.5Ti0.5)O3 content improved the temperature sensitivity of relative permittivity ?r at high temperatures. At x = 0.5, a near‐plateau relative permittivity, 835 ± 40, extended across the temperature range, 65°C–550°C; the permittivity increased at x = 0.6 to 2170 ± 100 for temperatures 160°C–400°C (1 kHz). The corresponding loss tangent, tanδ, was ≤0.025 for temperatures between 100°C and 430°C for composition x = 0.5; at x = 0.6, losses increased sharply at >300°C. Comparisons of dielectric properties with other materials proposed for high‐temperature capacitor applications suggest that (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3 ceramics are a promising base material for further development.  相似文献   

7.
《Ceramics International》2020,46(13):21336-21342
Li3Mg2(Nb1-xWx)O6+x/2 (0 ≤ x ≤ 0.08) ceramics were synthesized by the solid-state reaction route. The effects of W6+ substitution on the phase composition, microstructure and microwave dielectric properties of Li3Mg2NbO6 ceramics were investigated systematically. The XRD results showed that all the samples formed a pure solid solution in the whole doping range. The SEM iamges and relative density revealed the dense structure of Li3Mg2(Nb1-xWx)O6+x/2 ceramics. The relationship between the crystal structure and dielectric properties of Li3Mg2(Nb1-xWx)O6+x/2 ceramics was researched through polarizability, average bond valence, and bond energy. The substitution of W6+ for Nb5+ in Li3Mg2(Nb1-xWx)O6+x/2 ceramics significantly promoted the Q × f values. In addition, the increase of W6+ content improved the thermal stability of the Li3Mg2(Nb1-xWx)O6+x/2 ceramics. The Li3Mg2(Nb0.94W0.06)O6.03 ceramics sintered at 1175 °C for 6h possessed excellent properties: εr ~ 15.82, Q × f ~ 124,187 GHz, τf ~ −18.28 ppm/°C.  相似文献   

8.
The (1?x)Mg2Al4Si5O18xTiO2 |(1?x)MAS‐xT| (0 ≤ x ≤ 0.35) cordierite ceramics are fabricated by solid‐state reaction method for obtaining near‐zero temperature coefficient of resonant frequency (τf). The XRD and SEM results show that (1?x)MAS‐xT (0 ≤ x ≤ 0.10) ceramics exhibit single cordierite solid solution, whereas as 0.15 ≤ x ≤ 0.35, present composite phases of Mg2Al4Si5O18 solution and TiO2. Rietveld refinements of XRD data suggest that the [(Si4Al2)O18] hexagonal shape in cordierite structure happens to alternate change from nonsymmetrical hexagonal rings to almost centrosymmetrical equilateral rings as x increases to 0.10 comparing to that of x = 0. As Ti4+ ions squeeze into the [(Si4Al2)O18] rings structure, the orientation and shapes of the rings begin to rotate and expand from initial state of [1–20] (x = 0) to near [210] direction (x = 0.10), and then continue to expand toward close to [110] direction (x = 0.25). Due to centrosymmetry adjustment of [(Si4Al2)O18] hexagonal rings and of other microstructure factors improvement, the (1?x)MAS‐xT (x = 0.10) cordierite solution achieves optimum quality factor Qf: εr = 6.3, Qf = 55 400 GHz (17.6 GHz), τf = ?21 ppm/°C. The (1?x)MAS‐xT (x = 0.25) composites obtain a near‐zero temperature coefficient of resonance frequency: εr = 6.8, Qf = 37 800 GHz (18.4 GHz), τf = ?0.2 ppm/°C.  相似文献   

9.
Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 (x = 0, 0.1, 0.2, and 0.3) complex perovskite ceramics have been investigated. Long‐time annealing at temperatures below the order–disorder transition temperature enhances the cation ordering degree and promotes the ordering domain growth. The most significant improvement of Qf value is obtained together with the suppressed temperature coefficient of resonant frequency in the samples annealed at 1400°C for 12 h, while the dielectric constant decreases slightly. The Qf value of ceramics annealed at 1400°C mainly attributes to the enhanced cation ordering degree, because their low‐energy domain boundaries are not detrimental to the Qf value. As the annealing temperature increases close to the transition temperature, coarse ordering domains with high‐energy boundaries are formed, and then the Qf value steadily decreases because of the inferior domain structure, even the cation ordering degree increases. The microwave dielectric characteristics of Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics are affected by the common function of ordering degree and domain structure. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3 after annealing at 1400°C for 12 h: εr = 33.2, Qf = 117 200 GHz, and τf = 8.6 ppm/°C.  相似文献   

10.
Lead‐free BNT‐based piezoceramics, (1?x)Bi0.5Na0.5TiO3xBi(Mg0.5Ti0.5)O3 [(1?x)BNT–xBMT] (0.00 ≤  0.06) binary system, were synthesized using a conventional ceramic fabrication method. Effect of Bi(Mg0.5Ti0.5)O3 (BMT) substitution on room temperature (RT) crystal structure, and temperature dependence of electric properties were investigated. The XRD indicates that a pure perovskite phase is formed. The introduction of BMT decreases EC of BNT from 7.3 to 4.0 kV/mm, and increases d33 from 58 pC/N to 110 pC/N for the = 0.05. The system shows a typical ferroelectric (FE) polarization loop P(E) and butterfly bipolar strain‐electric S(E) curve at RT. For the composition of 0.95BNT–0.05BMT antiferroelectric (AFE) phase appears near 80°C, characterized by a constricted P(E) loop and altered bipolar S(E) butterfly, and gradually prevails with increasing temperature. Temperature dependence of dielectric constant shows that TC increases from 310°C for pure BNT to 352°C for the = 0.05. The results indicate that the piezoelectric properties of BNT have been improved by means of Bi(Mg0.5Ti0.5)O3 substitution.  相似文献   

11.
《Ceramics International》2020,46(6):7259-7267
Co-precipitation was successfully applied to synthesize the Sc3+ doped In2-xScx (WO4)3 (x = 0, 0.3, 0.6, 0.9 and 1.2) compounds. The composition- and temperature-induced structural phase transition and thermal expansion behaviors of Sc3+ doped In2(WO4)3 were investigated. Results indicate that In2-xScx (WO4)3 crystalizes in a monoclinic structure at 300 °C for x ≤ 0.3 and changes into hexagonal structure for x ≥ 0.6. Hexagonal In1.1Sc0.9(WO4)3 displays negative thermal expansion (NTE) with an average linear coefficient of thermal expansion (CTE) of −1.85 × 10−6 °C −1. After sintering at 700 °C and above, a phase transition from hexagonal to orthorhombic phase was observed in In2-xScx (WO4)3 (x ≥ 0.6). Sc3+ doping successfully reduce the temperature-induced phase transition temperature of In2-xScx (WO4)3 ceramics from 250 °C (x = 0) to room temperature (x = 0.9). When x = 0.9 and 1.2, the average linear CTEs of In2-xScx (WO4)3 ceramics are −5.45 × 10−6 °C−1 and -4.43 × 10−6 °C−1 in a wider temperature range of 25–700 °C, respectively.  相似文献   

12.
High‐performance lead‐free piezoelectric ceramics 0.94(K0.45Na0.55)1?xLix(Nb0.85Ta0.15)O3–0.06AgNbO3 (KNNLTAg‐x) were successfully prepared by spark plasma sintering technique. The doping effect of Li on the structural and electrical properties of KNNLTAg‐x (x=0, 0.02, 0.04, 0.06, 0.08 and 0.10) ceramics was studied. The lattice structure, ferroelectric and piezoelectric properties of the KNLNTAg‐x ceramics are highly dependent on the Li doping level. In particular, the Li dopant has a great impact on both Curie temperature Tc and orthorhombic‐tetragonal transition temperature TO‐T. The 4% Li‐doped sample exhibited relatively high TO‐T of 95°C, leading to a stable dynamic piezoelectric coefficient (d33*) of 220‐240 pm/V in a broad temperature range from 25°C to 105°C. Additionally, the 2% Li‐doped sample shows a high d33* of 320 pm/V at 135°C, suggesting its great potential for high‐temperature applications.  相似文献   

13.
K0.5(Nd1?xBix)0.5MoO4 (0.2 ≤ x ≤ 0.7) ceramics were prepared via the solid‐state reaction method. All ceramics densified below 720°C with a uniform microstructure. As x increased from 0.2 to 0.7, relative permittivity (?r) increased from 13.6 to 26.2 commensurate with an increase in temperature coefficient of resonant frequency (TCF) from – 31 ppm/°C to + 60 ppm/°C and a decrease in Qf value (= quality factor; = resonant frequency) from 23 400 to 8620 GHz. Optimum TCF was obtained for x = 0.3 (?15 ppm/°C) and 0.4 (+4 ppm/°C) sintered at 660 and 620°C with ?r ~15.4, Qf ~19 650 GHz, and ?r ~17.3, Qf ~13 050 GHz, respectively. Ceramics in this novel solid solution are a candidate for ultra low temperature co‐fired ceramic (ULTCC) technology.  相似文献   

14.
The crystal structure, microstructure, and microwave dielectric properties of forsterite‐based (Mg1–xNix)2SiO4 (= 0.02–0.20) ceramics were systematically investigated. All samples present a single forsterite phase of an orthorhombic structure with a space group Pbnm except for a little MgSiO3 secondary phase as x > 0.08. Lattice parameters in all axes decrease linearly with increasing Ni content due to the smaller ionic radius of Ni2+ compared to Mg2+. The substitution of an appropriate amount of Ni2+ could greatly improve the sintering behavior and produce a uniform and closely packed microstructure of the Mg2SiO4 ceramics such that a superior × f value (152 300 GHz) can be achieved as = 0.05. The τf value was found to increase with increasing A‐site ionic bond valences. In addition, various additives were used as sintering aids to lower the sintering temperature from 1500°C to the middle sintering temperature range. Excellent microwave dielectric properties of εr~6.9, × f~99800 GHz and τf~?50 ppm/°C can be obtained for 12 wt% Li2CO3‐V2O5‐doped (Mg0.95Ni0.05)2SiO4 ceramics sintered at 1150°C for 4 h.  相似文献   

15.
Using a conventional solid‐state reaction Ca5A4(VO4)6 (A2+ = Mg, Zn) ceramics were prepared and their microwave dielectric properties were investigated for the first time. X‐ray diffraction revealed the formation of pure‐phase ceramics with a cubic garnet structure for both samples. Two promising ceramics Ca5Zn4(VO4)6 and Ca5Mg4(VO4)6 sintered at 725°C and 800°C were found to possess good microwave dielectric properties: εr = 11.7 and 9.2, Q × f = 49 400 GHz (at 9.7 GHz) and 53 300 GHz (at 10.6 GHz), and τf = ?83 and ?50 ppm/°C, respectively.  相似文献   

16.
0.96(Na0.5K0.5)(Nb1?xSbx)‐0.04SrZrO3 ceramics with 0.0≤x≤0.06 were well sintered at 1060°C for 6 hours without a secondary phase. Orthorhombic‐tetragonal transition temperature (TO‐T) and Curie temperature (TC) decreased with the addition of Sb2O5. The decrease in TC was considerable compared to that in TO‐T, and thus the tetragonal phase zone disappeared when x exceeded 0.03. Therefore, a broad peak for orthorhombic‐pseudocubic transition as opposed to that for orthorhombic‐tetragonal transition appeared at 115°C‐78.2°C for specimens with 0.04≤x≤0.06. An orthorhombic structure was observed for specimens with x≤0.03. However, the polymorphic phase boundary structure containing orthorhombic and pseudocubic structures was formed for the specimens 0.04≤x≤0.06. Furthermore, a specimen with x=0.055 exhibited a large piezoelectric strain constant of 325 pC/N, indicating that the coexistence of orthorhombic and pseudocubic structures could improve the piezoelectric properties of (Na0.5K0.5)NbO3‐based lead‐free piezoelectric ceramics.  相似文献   

17.
《Ceramics International》2021,47(18):26074-26081
To explore an air-fireable and economically functional phase for thick-film resistors, the crystal structure, microstructure, sintering, and resistive properties of LaCo0·4Ni0.6−xMgxO3 (LCNM, x = 0.00–0.08) ceramics are studied in this paper, based on solid-state reaction experiments and theoretical calculations. With Mg-ion increase, the impurity phases of NiO and La3Ni4O10 increased, the maximum shrinkage rate occurred at a higher temperature, and the microstructures became worse. The addition of the Mg ion increased the resistivity and decreased the temperature coefficient of resistivity (TCρ). The calculation results, including the bond population, electron density distribution, and density of states of the system agreed with the change in experimental resistivity. Relatively low resistivity and TCρ with a small absolute value could be achieved for specimens with x ≤ 0.02 sintered at 1200 °C and 1250 °C. Hence, the LCNM (x ≤ 0.02) ceramics are possible functional material for thick-film resistors.  相似文献   

18.
(Mg1 − xCax)2SiO4 dense ceramics (x ≥ 0.15) were prepared, and their microwave dielectric characteristics were investigated together with the structure evolution. The sintering temperature for Mg2SiO4 ceramics was reduced significantly with Ca2+substitution. (Mg1 − xCax)2SiO4 ceramics exhibited a small increase in dielectric constant (εr) correlated with increased crystallite size, and ultra-high quality factor Qf value was achieved throughout the compositional range. Temperature coefficient of resonant frequency (τf) was considerably tuned from −70 ppm/°C to −33 ppm/°C, and this improvement was deeply linked with the decreased bond valance. At x = 0.075, (Mg1 − xCax)2SiO4 ceramics exhibited the best combination of microwave dielectric characteristics: ε= 7.2, Qf = 199,800 GHz at 26 GHz, τ= −33 ppm/°C. The present ceramics could be expected as promising candidate of dielectric materials for millimeter wave applications.  相似文献   

19.
The effects of the presence of Ga2O3 on low‐temperature sintering and the phase stability of 4, 5, and 6 mol% Sc2O3‐doped tetragonal zirconia ceramics (4ScSZ, 5ScSZ, and 6ScSZ, respectively) were investigated. A series of zirconia sintered bodies with compositions (ZrO2)0.99?x(Sc2O3)x(Ga2O3)0.01, x = 0.04, 0.05, and 0.06 was fabricated by sintering at 1000°C to 1500°C for 1 h using fine powders that were prepared via the combination of homogeneous precipitation method and hydrolysis technique using monoclinic zirconia sols synthesized through the forced hydrolysis of an aqueous solution of zirconium oxychloride at 100°C for 168 h. The presence of 1 mol% Ga2O3 was effective in reducing sintering temperature necessary to fabricate dense bodies and enabled to obtain dense sintered bodies via sintering at 1100°C for 1 h. The phase stability, that is, low‐temperature degradation behavior of the resultant zirconia ceramics was determined under hydrothermal condition. The zirconia ceramics codoped with 1 mol% Ga2O3 and 6 mol% Sc2O3 (1Ga6ScZ) fabricated via sintering at 1300°C for 1 h showed high phase stability without the appearance of monoclinic zirconia phase, that is the tetragonal‐to‐monoclinic phase transformation was not observed in the 1Ga6ScZ after treatment under hydrothermal condition at 150°C for 30 h.  相似文献   

20.
The structure stabilities of double perovskite ceramics‐ (1 ? x) Ba(Mg1/2W1/2)O3 + xBa(Y2/3W1/3)O3 (0.01 ≤ x ≤ 0.4) have been studied by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman spectrometry in this study. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results showed that all the compounds exhibited face‐centered cubic perovskite structure. Part of Y3+ and W6+ cations occupied 4a‐site and the remaining Y3+ and Mg2+ distributed over 4b‐site, respectively, and kept the B‐site ratio 1:1 ordered. Local ordering of Y3+/Mg2+ on 4b‐site and Y3+/W6+ cations on 4a‐site within the short‐range scale could be observed with increasing Y‐doping content. The decomposition of the double perovskite compound at high temperature was successfully suppressed by doping with Y on B‐site. However, Ba2Y0.667WO6 impurity phase appeared when x > 0.1. The optimized dielectric permittivity increased with the increase in Y doping. The optimized Q × f value was remarkably improved with small amount of Y doping (x ≤ 0.02) and reached a maximum value of about 160 000 GHz at x = 0.02 composition. Further increasing in Y doping led to the decrease in Q × f value. All compositions exhibited negative τf values. The absolute value of τf decreased with increasing Y‐doping content. Excellent combined microwave dielectric properties with εr = 20, Q × = 160 000 GHz, and τf = ?21 ppm/°C could be obtained for x = 0.02 composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号