首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection is still a major concern in bone implants, especially in the implants with porous structures. As silver shows superior and broad‐spectrum antibacterial activity, porous silver‐doped β‐tricalcium phosphate (β‐TCP) bioceramics are prepared with 5% and 10% nanometer silver. The bioceramics show similar porous macrostructure with pure β‐TCP bioceramic, except slightly color change. They have almost identical microstructure to its pure β‐TCP counterpart under field emission scanning electron microscope. Their physical, chemical, and mechanical properties were investigated with X‐ray diffraction, Fourier transforming infrared spectrometer, and AG‐5kN, and no significant difference has been found between silver‐doped β‐TCP bioceramics and pure β‐TCP bioceramic. Bactericidal concentration of silver ions was detected in the solution soaked with the bioceramics. They can efficiently inhibit the growth of Staphylococcus epidermidis and Styphylococcus aureus, but show no cytotoxicity to L929 cells. It suggests that silver‐doped β‐TCP bioceramics can be developed into new type of bone substitutes with anti‐infection properties.  相似文献   

2.
Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β‐tricalcium phosphate (β‐TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high‐temperature ceramics. In this work self‐setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β‐TCP ratios were obtained from self‐setting α‐TCP/β‐TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α‐TCP was fully hydrolyzed to a calcium‐deficient HA (CDHA), whereas β‐TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non‐reacting β‐TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β‐TCP, the more soluble phase was exposed to the surrounding media.  相似文献   

3.
Nano‐fillers play an important role in the final structure and properties of nanocomposites. The objective of the work presented here was to prepare nanocomposite films of chitosan/α‐zirconium phosphate using a casting process, with α‐zirconium phosphate (α‐ZrP) as nano‐filler and chitosan as matrix. The effects of α‐ZrP on the structure and properties of the nanocomposites were investigated. X‐ray diffraction patterns showed that α‐ZrP crystals were intercalated by n‐butylamine. The results from scanning electron microscopy and transmission electron microscopy indicated that α‐ZrP could be uniformly dispersed in the chitosan matrix when α‐ZrP loading in the composites was less than 2 wt%. A strong interaction between α‐ZrP and chitosan formed during the film‐forming process. Tensile testing showed that the tensile strength and elongation at break of nanocomposite films achieved maximum values of 61.6 MPa and 58.1%, respectively, when α‐ZrP loading was 2 wt%. The parameter B calculated from tensile yield stress according to the Pukanszky model was used to estimate the interfacial interaction between the chitosan matrix and α‐ZrP. Films with a loading of 2 wt% α‐ZrP had the highest B value (3.2), indicating the strongest interfacial interaction. The moisture uptake of the nanocomposites was reduced with addition of α‐ZrP. It can be concluded that α‐ZrP as nano‐filler in a chitosan matrix can enhance the mechanical properties of nanocomposites due to the strong interactions between α‐ZrP and chitosan. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
Two series of composites, i.e., polyvinyl alcohol (PVA)/oxidized starch (OST)/exfoliated α‐zirconium phosphate (POST‐ZrPn) and PVA/starch (ST)/exfoliated α‐zirconium phosphate (PST‐ZrPn), were fabricated using a casting and solvent evaporation method. The composites were characterized by Fourier transform infrared spectroscopy (FT‐IR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), tensile testing, and moisture uptake. Compared with PST‐ZrPn, POST‐ZrPn films with the same component ratio showed higher tensile strength (σb), lower elongation at break (εb) and improved water resistance. Additionally, in the POST‐ZrPn series, σb and εb increased with an increase in α‐zirconium phosphate (α‐ZrP) loading; however, higher α‐ZrP loads resulted in the aggregation of α‐ZrP particles. Compared with POST‐ZrP0, the values for σb, εb, and water resistance of POST‐ZrP3, containing 1.5 wt % α‐ZrP, were increased by 128.8%, 51.4%, and 30.2%, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
《Ceramics International》2016,42(14):15311-15318
Facile wet-chemical methods are applied to synthesize hydroxyapatite and β-tricalcium phosphate nanoparticles, respectively. Porous biphasic calcium phosphate (BCP) bioceramic scaffolds are then fabricated using as-prepared HA and β-tricalcium phosphate nanoparticle powders. The macro pore diameter of BCP bioceramic scaffolds can be controlled by adjusting the amount of surfactants. The average diameter of the macro pores in BCP bioceramic scaffolds increases from 100 to 600 µm with the decrease amount of sodium dodecyl sulfate from 0.8 to 0.5 g, respectively. The BCP bioceramic scaffolds gradually degrade and the calcium-phosphate compounds fully deposit when soaking in simulated body fluid solution. Moreover, The BCP bioceramic scaffolds have outstanding biocompatibility to promote the cellular growth and proliferation of human dental pulp stem cells (hDPSCs). The hDPSCs also demonstrate favorable cellular adhering capacity on the pore surface of scaffolds, especially on the scaffolds with 100–200 µm pore diameter. The porous BCP bioceramic scaffold with inter-connected pore structure, outstanding in vitro cellular biocompatibility, favorable cell viability and adhesion ability will be a promising biomaterial for bone or dentin tissue regeneration.  相似文献   

6.
Strontium plays important physicochemical and biological roles in the applications of bone repair materials. The available methods of Sr doping in bone cements were believed to make a key effect on the biodegradation and Sr ion release behaviors of cements. In this work, Sr‐doped octacalcium phosphate (Sr‐OCP), Sr‐doped α‐tricalcium phosphate (Sr‐α‐TCP), SrCO3, and SrCl2 with different actual availability of Sr2+ were imported into α‐TCP bone cements, and their effects on the biodegradation and ions release of cements were comparatively investigated. Incorporation of different Sr carriers had led to distinct hydration morphologies, crystal evolutions, degradation rates, and microenvironments of bone cements during their in vitro biodegradation. Compared with other Sr carriers, Sr‐OCP facilitated the hydration reaction of α‐TCP, which induced the enhanced degradation and Sr ion release behaviors. In conclusion, Sr‐OCP was supposed to be a more potential Sr carrier applied in the synthesis of biodegradable Sr‐doped calcium phosphate bone cements.  相似文献   

7.
Hydration of partially amorphized α‐TCP powders with Sr2+ concentrations ranging from 0 to 10 mol% substitution for Ca2+ was analyzed by isothermal calorimetry and quantitative in‐situ XRD. Hydration of both crystalline α‐TCP and amorphous TCP (ATCP) forming CDHA was retarded to an increasing extent with increasing Sr2+ content. Sr2+ slightly reduced the crystallite size (XRD coherent scattering domains) of the CDHA formed during hydration, while the size of crystals visible under SEM was not noticeably affected. Reaction enthalpies of ΔHR(Sr‐α‐TCP→Sr‐CDHA) = 122 ± 8 J/gTCP and ΔHR(Sr‐ATCP→Sr‐CDHA) = 257 ± 8 J/gTCP were determined for the hydration of crystalline α‐TCP and ATCP containing 5 mol% Sr2+ substitution for Ca2+. This is comparable with the corresponding reaction enthalpies previously obtained for undoped samples, which are 106 ± 7 J/gTCP for α‐TCP and 250 ± 7 J/gTCP for ATCP.  相似文献   

8.
The objective of this study was to develop novel porous composite scaffolds for bone tissue engineering through surface modification of polycaprolactone–biphasic calcium phosphate‐based composites (PCL–BCP). PCL–BCP composites were first fabricated with salt‐leaching method followed by aminolysis. Layer by layer (LBL) technique was then used to immobilize collagen (Col) and bone morphogenetic protein (BMP‐2) on PCL–BCP scaffolds to develop PCL–BCP–Col–BMP‐2 composite scaffold. The morphology of the composite was examined by scanning electron microscopy (SEM). The efficiency of grafting of Col and BMP‐2 on composite scaffold was measured by X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Both XPS and FTIR confirmed that Col and BMP‐2 were successfully immobilized into PCL–BCP composites. MC3TC3‐E1 preosteoblasts cells were cultivated on composites to determine the effect of Col and BMP‐2 immobilization on cell viability and proliferation. PCL–BCP–Col–BMP‐2 showed more cell attachment, cell viability, and proliferation bone factors compared to PCL–BCP‐Col composites. In addition, in vivo bone formation study using rat models showed that PCL–BCP–Col–BMP‐2 composites had better bone formation than PCL–BCP‐Col scaffold in critical size defect with 4 weeks of duration. These results suggest that PCL–BCP–Col–BMP‐2 composites can enhance bone regeneration in critical size defect in a rat model with 4 weeks of duration. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45186.  相似文献   

9.
To achieve novel polymer/bioceramic composite scaffolds for use in materials for bone tissue engineering, we prepared organic/inorganic hybrid scaffolds composed of biodegradable poly(ε‐caprolactone) (PCL) and hydroxyapatite (HA), which has excellent biocompatibility with hard tissues and high osteoconductivity and bioactivity. To improve the interactions between the scaffolds and osteoblasts, we focused on surface‐engineered, porous HA/PCL scaffolds that had HA molecules on their surfaces and within them because of the biochemical affinity between the biotin and avidin molecules. The surface modification of HA nanocrystals was performed with two different methods. Using Fourier transform infrared, X‐ray diffraction, and thermogravimetric analysis measurements, we found that surface‐modified HA nanocrystals prepared with an ethylene glycol mediated coupling method showed a higher degree of coupling (%) than those prepared via a direct coupling method. HA/PCL hybrid scaffolds with a well‐controlled porous architecture were fabricated with a gas‐blowing/particle‐leaching process. All HA/PCL scaffold samples exhibited approximately 80–85% porosity. As the HA concentration within the HA/PCL scaffolds increased, the porosity of the HA/PCL scaffolds gradually decreased. The homogeneous immobilization of biotin‐conjugated HA nanocrystals on a three‐dimensional, porous scaffold was observed with confocal microscopy. According to an in vitro cytotoxicity study, all scaffold samples exhibited greater than 80% cell viability, regardless of the HA/PCL composition or preparation method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
A composite scaffold of gelatine (Gel)‐pectin (Pec)‐biphasic calcium phosphate (BCP) was successfully fabricated. Growth factors such as bone morphogenetic protein‐2 (BMP‐2) and vascular endothelial growth factor (VEGF) were loaded into the Gel‐Pec‐BCP hydrogel scaffolds by freeze‐drying. The surface morphology was investigated by scanning electron microscopy, and BCP dispersion in the hydrogel scaffolds was measured by energy dispersive and X‐ray diffraction spectroscopy. The results obtained from Fourier transform infrared spectroscopy and quantitative measurements showed successfully loading of BMP‐2 and VEGF into the Gel‐Pec‐BCP hydrogel scaffolds. In addition MC3T3‐E1 preosteoblasts were cultivated on the three types of scaffolds to investigate the effects of BMP‐2 and VEGF on cell viability and proliferation. The Gel‐Pec‐BCP scaffolds loaded with VEGF and BMP‐2 demonstrated more cell spreading and proliferation compared to those of the Gel‐Pec‐BCP scaffolds. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41241.  相似文献   

11.
《Ceramics International》2022,48(16):22647-22663
Calcium phosphates (apatites) are considered as a research frontier for bone regeneration applications by virtue of similarity to the mineral constituent of bone, suitable biocompatibility and remarkable osteogenesis ability. In this regard, the biodegradability and mechanical properties of monophasic apatites, typically hydroxyapatite (HA) and tricalcium phosphate (TCP), are imperfect and do not fulfill some requirements. To overcome these drawbacks, 3D porous HA/TCP composite scaffolds prepared by conventional and more recently, 3D printing techniques have shown to be promising since their bioperformance is adjustable by the HA/TCP ratio and pores. Despite the publication of several reviews on either 3D porous scaffolds or biphasic calcium phosphates (BCPs), no review paper has to our knowledge focused on 3D porous BCP scaffolds. This paper comprehensively reviews the production methods, properties, applications and modification approaches of 3D porous HA/TCP composite scaffolds for the first time. In addition, new insights are introduced towards developing HA/TCP scaffolds with more impressive bioperformance for further tissue engineering applications, including those with different interior and exterior frameworks, patient-specific specifications and drugs (or other biological factors) loading.  相似文献   

12.
Four calcium phosphate ceramic coatings, the less soluble hydroxyapatite (HA) coating, the more soluble β-tricalcium phosphate (β-TCP) coating, and two biphasic calcium phosphate (BCP) coatings with HA/β-TCP ratios of 70/30 and 30/70 were fabricated by spraying each corresponding powder onto a titanium substrate at room temperature (RT) in a vacuum, in order to investigate the effect of the HA/β-TCP ratio on the dissolution behavior and the cellular responses of the coating. No secondary phases, except for HA and β-TCP, were observed for the coatings in the X-ray diffraction results. The coating compositions were almost the same as those of the starting powders because the coating was conducted at RT. Microscopic examination of the coatings revealed crack-free and dense microstructures. The BCP coatings exhibited dissolution rates intermediate between those of the pure HA and β-TCP coatings. The dissolution rate of the coatings was largely dependent on their HA/β-TCP ratio. The cell proliferation and differentiation results indicated that the cellular responses of the coatings were not proportional to their dissolution rates. The 3HA–7TCP (HA/β-TCP ratio of 30/70) coating exhibited an optimal dissolution rate for excellent biological performance.  相似文献   

13.
To improve the mechanical properties of a porous bioceramic without reducing its porosity, a new kind of porous hydroxyapatite (HA) bioceramic with in-situ grown HA whiskers was fabricated using a simple sintering method. CaSO4·2H2O was used as a pore-forming medium and also as a catalyst for the growth of in-situ HA whiskers. The bioceramic was analyzed by XRD, SEM and mechanical tests. In-situ grown HA whiskers were stratified on the cliffs of pores in the bioceramic. The compressive strength is as high as 21.7 MPa with the porosity of about 26%. The results show that porous HA bioceramic can be improved in both compressive strength and porosity by the addition of CaSO4·2H2O. This novel HA bioceramic has a higher compressive strength without reducing its porosity in a certain weight ratio of CaSO4·2H2O, which depends on its two-step fracture pattern. This novel structure provides a new and promising reinforced pattern for porous materials.  相似文献   

14.
Tissue engineering holds an exciting promise in providing a long‐term cure to bone‐related defects and diseases. However, one of the most important prerequisites for bone tissue engineering is an ideal platform that can aid tissue genesis by having biomimetic, mechanostable, and cytocompatible characteristics. Chitosan (CS) was chosen as the base polymer to incorporate filler, namely beta‐tri calcium phosphate (β‐TCP). This research deals with a comparative study on the properties of CS scaffolds prepared using micro‐ and nano‐sized β‐TCP as filler by freeze gelation method. The scaffolds were characterized for their morphology, porosity, swelling, structural, chemical, biodegradation, and bioresorption properties. Rheological behavior of polymer and polymer‐ceramic composite suspensions were analyzed and all the suspensions with varying ratios of β‐TCP showed non‐Newtonian behavior with shear thinning property. Pore size, porosity of micro‐ and nano‐sized composite scaffolds are measured as 48–158 μm and 77% and 43–155 μm and 81%, respectively. The scaffolds containing nano β‐TCP possess higher compressive strength (~2.67 MPa) and slower degradation rate as compared to composites prepared with micro‐sized β‐TCP (~1.52 MPa). Bioresorbability, in vitro cell viability by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, proliferation by Alamar blue assay, cell interaction by scanning electron microscope, and florescence microscopy further validates the potentiality of freeze‐gelled CS/β‐TCP composite scaffolds for bone tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41025.  相似文献   

15.
《Ceramics International》2017,43(15):12213-12220
The aim of this research is to observe the physicochemical characterization and evaluate the biocompatibility of the HA/β-TCP biphasic calcium phosphate ceramics (BCP) produced from fish bones. In addition, the mechanism of the formation of BCP after calcination of fish bones was discussed. Three kinds of fish bones (Salmo salar, Anoplopoma fimbria and Sardine) were prepared and calcined for one hour at different temperatures ranging from 600 °C to 1100 °C in a muffle furnace. The calcined bones were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (GTA), inductively coupled plasma optical atom emissions spectroscopy (ICP-OES), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The in vitro cytotoxicity assessment was used to evaluate the biocompatibility of the biphasic ceramics. BCP materials were produced from all kinds of fish bones by calcination above 700 °C, the carbonated hydroxyapatite and multiple trace element were also found in the calcined bones. With the increase of temperature, the ratio of HA/β-TCP varied and the major organic components were progressively removed. The carbonated hydroxyapatite disappeared when temperature rises above 900 °C. Rising temperature also caused crystal growth that eventually gave rise to the increase of the BCP grain size and influenced the mesoporous structure. The BCP materials were confirmed to have no obvious cytotoxicity to mesenchymal stem cells (MSC) in the in vitro cytotoxicity assessment. Calcium-deficient hydroxyapatite(CDHA) may make up the major inorganic constituent of fish bones that could decompose to HA and β-TCP when calcined above 700 °C. 800–900 °C is considered to be the optimal temperature to fabricate BCP materials which contain more β-TCP, carbonated hydroxyapatite and retain distinct mesoporous structure while has good biocompatibility. With the unique composition and structure, these three kinds of fish-bone-derived BCP materials can be further applied to fabricate bioceramic scaffolds for biomedical applications.  相似文献   

16.
The effects of α‐form and β‐form nuclei on polymorphic morphology of poly(butylene adipate) (PBA) upon recrystallization from the molten state up to various Tmax values were examined by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and polarized light microscopy (PLM). In this study, PBA with complex melting and polymorphism behaviour was used as a model for examining different types and extents of residual nuclei. As the PBA initially containing the sole α‐crystal was brought to a molten state of various Tmax, the extents of trace α‐form crystal nuclei varied and were dependent on Tmax. Furthermore, it did not matter whether, initially, the PBA contained α‐ or β‐form crystals (or both) because only a single type of α‐nuclei could be left upon treatment to the molten liquid state at Tmax. Therefore, only the α‐crystal in PBA had ‘memory capacity’ in the molten liquid state while the β‐crystal did not. This was so because the latter had been completely transformed into the solid state prior to being heated into a liquid. PBA crystallized before α‐nuclei could be packed into α‐crystal, regardless of the crystallization temperature (Tc). For recrystallization from molten PBA without any nuclei, the crystalline polymorphism was correspondingly influenced by Tc. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Scaffolds of polycaprolactone (PCL) and PCL composites reinforced with β‐tricalcium phosphate (β‐TCP) were manufactured aiming potential tissue engineering applications. They were fabricated using a three‐dimensional (3D) mini‐screw extrusion printing, a novel additive manufacturing process, which consists in an extrusion head coupled to a 3D printer based on the Fab@Home equipment. Thermal properties were obtained by differential scanning calorimetry and thermogravimetric analyses. Scaffolds morphology were observed using scanning electron microscopy and computed microtomography; also, reinforcement presence was observed by X‐ray diffraction and the polymer chemical structure by Fourier transform infrared spectroscopy. Mechanical properties under compression were obtained by using a universal testing machine and hydrophilic properties were studied by measuring the contact angle of water drops. Finally, scaffolds with 55% of porosity and a pore size of 450 μm have shown promising mechanical properties; the β‐TCP reinforcement improved mechanical and hydrophilic behavior in comparison with PCL scaffolds. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43031.  相似文献   

18.
Composites of poly(D ,L ‐lactide) (PDLLA) with hydroxylapatite (HA) and PDLLA with tertiary calcium phosphate (TCP) were prepared by in situ modification with methylenediphenyl diisocyanate (MDI) and molded by piston extrusion at temperature between Tg and Tm of PDLLA. Mechanical properties of the composites increased obviously when compared with the unmodified bioactive ceramic particles/PDLLA composites. The effect of MDI contents on mechanical properties of the composites was studied. At the optimum conditions of 1.0/1.0molar ratios of ? NCO groups in MDI to ? OH groups in PDLLA, bending strength 68.4 MPa and bending modulus 2281.5 MPa, were achieved in composite HA/PDLLA/MDI with 15 wt % HA. Both increased by nearly 30% when compared with that of solution cast HA/PDLLA composites. Interfacial adhesion and compatibility between PDLLA and bioactive ceramic particles (HA and TCP) were investigated. Scanning electron microscopy (SEM) indicated that the interface between HA particles and PDLLA was blurred and HA particles were closely surrounded by PDLLA matrix in HA/PDLLA/MDI composites. Oriented fibrils along with longitudinal direction of extrusion die were also observed on the surfaces of HA/PDLLA/MDI composite. It is confirmed that MDI has improved interfacial adhesion and compatibility between HA particles and PDLLA phase. Fibril structures formed in the extrusion, and it contributed a great deal in enhancing the mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4085–4091, 2006  相似文献   

19.
A case of phosphor is reported where the cooling rate parameter significantly influences the luminescence property. By quenching the sample after the high‐temperature solid‐state reaction at 1250°C, we successfully prepared the Eu2+‐doped α form Ca3(PO4)2 (α‐TCP:Eu2+) as a new kind of bright cyan‐emitting phosphor. The unusual emission color variation (from cyan to blue) depends on the cooling rate after sintering and Eu2+ doping level as it was observed in the TCP‐based phosphors. By the Rietveld analysis, it is revealed that the cyan‐ and blue‐emitting phosphors are two different TCP forms crystallizing in the monoclinic (space group P21/a, α‐TCP) and the rhombohedral structure (space group R3c, β‐TCP), respectively. Upon 365 nm UV light excitation, α‐TCP:Eu2+ exhibits an asymmetric broad‐band cyan emission peaking at 480 nm, while β‐TCP:Eu2+ displays a relatively narrow‐band blue emission peaking at 416 nm. The Eu2+‐doping in Ca3(PO4)2 shifts the upper temperature limit of the stable structural range of β form from 1125°C to ≥1250°C. Moreover, the crystal structures of α/β‐TCP:Eu2+ were compared in the aspects of compactness and cation site sets. The emission thermal stability of α/β‐TCP:Eu2+ was comparatively characterized and the difference was related to the specific host structural features.  相似文献   

20.
The combination of biopolymer with a bioactive component takes advantage of the osteoconductivity and osteoinductivity properties. The studies on composites containing hydroxyapatite (HA), demineralized bone matrix (DBM) fillers and chitosan biopolymer are still conducted. In the present study, the bioactive fillers were loaded onto p(HEMA‐MMA) grafted chitosan copolymer to produce a novel biocomposites having osteoinductive and osteoconductive properties. The produced composites were assessed by TGA, XRD, FTIR, and SEM techniques to prove the interaction between both matrices. In vitro behavior of these composites was performed in SBF to verify the formation of apatite layer onto their surfaces and its enhancement. The results confirmed the formation of thick apatite layer containing carbonate ions onto the surface of biocomposites especially these containing HA‐DBM mixture and pMMA having bone cement formation in their structure. These a novel biocomposites have unique bioactivity properties can be applied in bone implants and tissue engineering applications as scaffolds in future. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号