首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organic–inorganic composite hydrogel was prepared based on hemicellulose and multi‐wall carbon nanotubes. The effects of hydrogel amount, initial concentration, contact time, and salt concentration on the adsorption performance of the prepared hydrogels were observed using methylene blue as a model hazardous material. The results indicated that the adsorption kinetic of methylene blue on the prepared adsorbent was well fitted to the pseudo‐second‐order kinetic model and the adsorption isotherm conformed to the Freundlich model. Removal percentage of methylene blue increased with increased adsorbent amount and kept higher than 98% when adsorbent amount was above 6 g L−1. Adsorption amount of methylene blue on the prepared adsorbent also increased when increasing initial concentration over the range from 50 to 500 mg L−1. Both of adsorption amount and removal percentage increased with an increase in the contact time, and removal efficiency obviously deteriorated as salt concentration increased. All obtained results reported that the prepared composite hydrogel would have an application prospect in water treatment. POLYM. COMPOS., 35:45–52, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Pectin‐[(3‐acrylamidopropyl) trimethylammonium chloride‐co‐acrylic acid] hydrogel has been prepared from the aqueous blend solution of pectin, (3‐acrylamidopropyl) trimethylammonium chloride (APTAC), and acrylic acid (AAc) by applying gamma radiation of different doses (1–25 kGy) from 60Co gamma source. The hydrogels were characterized by equilibrium swelling, Fourier transform infrared, differential scanning calorimetry, and scanning electron microscopy. The hydrogels were used in multielement adsorption and it was found that pectin‐(APTAC‐co‐AAc) gel is highly selective toward silver (I) ion among 27 metal ions. The data obtained from equilibrium adsorption studies were fitted in Langmuir and Freundlich adsorption isotherm models and model parameters evaluated. The maximum adsorption capacity of pectin‐(APTAC‐co‐AAc) gel was found to be 67.6413 mg/g of dry gel at sample volume of 25 mL. The kinetic data were tested using pseudo‐first order and pseudo‐second order kinetic models and different adsorption diffusion models such as film diffusion and intra‐particle diffusivity model. Thiourea solution was used for desorption of adsorbed metal ions from the hydrogel. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45906.  相似文献   

3.
A novel hydrogel poly(acrylamide‐co‐poly‐N‐methylacrylamide) grafted katira gum (KG) was synthesized via free radical copolymerization using a mixture of acrylamide and N‐methylacrylamide in presence of N,N′‐methylene‐bis‐acrylamide as a crosslinking agent. A series of hydrogels (KG‐1 to KG‐6) were prepared by varying amount of acrylamide and N‐methylacryamide. Poly‐acrylamide‐g‐katira gum (PAM‐g‐KG) and poly‐N‐methylacrylamide‐g‐katira gum (PNMA‐g‐KG) hydrogels were also prepared using same crosslinking agent. Swelling characteristics of all the prepared hydrogels in water were evaluated and the hydrogel with best swelling property (KG‐6) was identified. The hydrogel KG‐6 was characterized by FTIR, X‐ray diffractometer, and scanning electron microscopy and was used for the adsorption of textile dyes namely methylene blue (MB), malachite green (MG), and congo red (CR) from single and ternary solutions. Adsorption dynamics, kinetics, isotherm, and thermodynamics of all the prepared hydrogels were studied in the ternary dye solutions. The sorption kinetics data were fitted well to pseudo‐second order and the equilibrium adsorption data were found to follow Freundlich isotherm model. The thermodynamics studies showed that the adsorption process was spontaneous and exothermic in nature. The preferential dye adsorption by the hydrogel was followed in the order MB > MG > CR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45958.  相似文献   

4.
In this article, the multiple stimulus‐responsive organic/inorganic hybrid hydrogels by combining poly(2‐(2‐methoxyethoxy) ethyl methacrylate‐co‐oligo (ethylene glycol) methacrylate‐co‐acrylic acid) (PMOA) hydrogel with magnetic attapulgite/Fe3O4 (AT‐Fe3O4) nanoparticles were applied to the removal of Rhodamine B (RhB) dye from wastewater. The adsorption of RhB by the hydrogels was carried out under different external environmental, such as pH, temperature and magnetic‐field. The results showed that the hydrogels still possessed temperature, pH and magnetic‐field sensitivity during the adsorption process, which indicated that the adsorption could be controlled by the hydrogels responsive. The dye adsorption had a significant increment at 30°C and the removal of RhB could reach to over 95%. Besides, the low pH values were also favorable for the RhB adsorption, the removal was over 90% at pH = 4.56. Kinetic studies showed that the pseudo‐second order kinetic model well fitted the experimental data. The rate constant of adsorption was 0.0379 g/mg min. Langmuir and Freundlich isotherm models were applied to the equilibrium adsorption for describing the interaction between sorbent and adsorbate. The maximum KL and KF were 2.23 (L/g) and 0.87 (mg/g) at 30°C, respectively. Under the external magnetic‐field, the adsorption rate significantly increased within 250 min and the hydrogels could be separated easily from wastewater. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42244.  相似文献   

5.
Herein, we report the preparation of robust polyacrylic acid hydrogel using rod‐like amidodiol as physical crosslinker. Polyacrylic acid–amidodiol hydrogels were characterized for its chemical structure, rheology, swelling, diffusion, and adsorption properties. Kinetics and mechanism of adsorption were investigated by UV–visible spectroscopy using dyes such as rhodamine 6G and methylene blue as adsorbate. Results suggested pseudo second‐order kinetics of multilayer adsorption and hydrogel could retain its shape even after swelling. Effect of amidodiol on the adsorption of dyes was investigated. Extent of interaction between adsorbate–adsorbate and adsorbent–adsorbate was studied using Gile's model. The generated results may provide a low cost simple technology for developing robust polymeric hydrogel adsorbent. The adsorption characteristics results can be exploited for setting up pilot plant adsorbent for the removal of such organic toxic materials. Finally, we have demonstrated its application for the removal of dyes from waste water collected from textile and paper industries. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40908.  相似文献   

6.
In this study, poly(vinyl alcohol) (PVA) and poly(ethylene oxide) (PEO) hydrogels were synthesized and evaluated as adsorbent for dye removal from wastewater using methylene blue (MB) in aqueous solution as probe. PEO samples were photochemically prepared by varying irradiation time (1–16 h), while PVA samples were synthetized with different concentration of glutaraldehyde (GA) (0.03–0.48%). The obtained hydrogels were obtained through the analysis of a swelling test, scanning electron microscopy, and adsorption studies. PEO hydrogels adsorption capacity was dependent on the irradiation time, while the PVA hydrogel adsorption capacity reduces with GA concentration. Both hydrogels demonstrated a Langmuir isotherm adsorption model at the equilibrium and pseudo‐second order kinetic fits properly. pH studies showed that when pH reaches 12, the adsorbed MB amount is close to 8 and 2 times higher than pH = 2 both hydrogels. Photochemical preparation of hydrogels shows an easier way of tuning their properties in order to maximize dye removal. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45043.  相似文献   

7.
Hydrolyzed collagen‐grafted‐poly[(acrylic acid)‐co‐(methacrylic acid)] hydrogels were synthesized by solution polymerization and confirmed by infrared spectroscopy. From sequential univariate analysis, the optimal molar ratio of acrylic acid: methacrylic acid was 92:8 in the presence of N,N′‐methylenebisacrylamide, ammonium persulfate, and N,N,N′,N′‐tetramethylethylenediamine at 0.12, 0.015, and 0.2% mol of the monomers, respectively. The water absorbency of this hydrogel was both pH‐ and temperature‐dependent, but was higher in nonbuffered water than in boric acid/citric acid/phosphate buffer under the same conditions. The optimal hydrogel could swiftly swell and deswell in neutral and acid solutions, respectively. Its potential application in drug delivery was examined using insulin and methylene blue as model payload drugs. Loading in a 50% (v v?1) ethanol solution gave a higher insulin loading level than in the buffer water. Insulin and methylene blue were both released at pH 6.8 but not at pH 1.2, but followed first order kinetics and the Higuchi equation, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45654.  相似文献   

8.
Novel porous hydrogels were successfully synthesized from hemicelluloses (HCs) and acrylamide (Am) with poly(ethylene glycol) (PEG) as the porogen. The prepared hydrogels were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy (SEM). The results show that the used PEG was not involved in the formation process of the hydrogels, and the HC‐g‐polyacrylamide hydrogels displayed a higher thermal stability than the hemicellulosic polymer. SEM analysis confirmed that the prepared hydrogels had porous structures. The effects of the Am/HC ratio, the amount and molecular weight of PEG and the amount of the crosslinker N,N‐methylene bisacrylamide on the swelling ratio of the prepared hydrogels were investigated in detail. The experimental data were fitted with the exponential heuristic equation and the Schott second‐order dynamic equation. The diffusion of water molecules into the hydrogel network was found to be non‐Fickian in behavior, and the swelling kinetics could be described by the Schott second‐order dynamic equation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
L. Jin  D. He  M. Wei 《化学工程与技术》2011,34(9):1559-1566
The composite of carboxymethyl‐modified β‐cyclodextrin‐intercalated ZnAl‐layered double hydroxide (CMCD‐LDH) was investigated for selective adsorption of phenol (Ph) and nitrobenzene (NB). The Freundlich model can be used to describe satisfactorily the adsorption isotherms of Ph and NB. The adsorption capacity of CMCD‐LDH for Ph and NB increases with the increase of temperature, indicating the endothermic nature of this sorption process. CMCD‐LDH exhibits preferential adsorption for Ph over NB at pH 6.5 due to the selective recognition of the interlayer CMCD cavity. Pseudo‐first‐order and pseudo‐second‐order kinetic models were applied to simulate the kinetics of the adsorption process. The calculated qe values based on the pseudo‐second‐order model are much closer to the experimental data qe,exp. As a result, the pseudo‐second‐order kinetic model is more reasonable to describe the adsorption process of Ph and NB onto the CMCD‐LDH composite. CMCD‐LDH can be potentially applied in selective adsorption and separation of wastewater pollutants.  相似文献   

10.
In this study, Acrylic acid (AA)/2‐acrylamido‐2‐methlypropane sulfonic acid (AMPS) hydrogels were prepared by free radical polymerization in aqueous solutions of AA, AMPS, and N,N‐methylenebisacrylamide (NMBA) as crosslinker. Potassium persulfate (PPS)/potassium bisulfide (PBS) were used as initiator and accelerator pair. The water absorption capacities and dye adsorption properties of the hydrogels were investigated. Adsorption properties of the hydrogels were evaluated by depending on different adsorption conditions such as different initial dye concentration and contact time. The concentrations of the dyes were determined using UV/Vis Spectrophotometer at wavelength 530 nm for safranine T (ST) and 622 nm for brilliant cresyl blue (BCB). Adsorption kinetic studies showed that pseudo‐first order kinetic model is suitable to explain the adsorption kinetic data of the hydrogels. Langmuir and Freundlich isotherm models were used to describe adsorption data. The result revealed that the adsorption of basic dyes onto hydrogels fit very well both Langmuir and Freundlich isotherms. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
A series of pH‐sensitive semi‐IPN hydrogels, composed of varying amounts of monomer acrylic acid(AAc), crosslinker N,N′ methylene bisacrylamide, polymer cellulose acetate (CA) were synthesized via photoinitiated polymerization in dimethyl formamide (DMF) medium. The CA/P (AAc) hydrogels were characterized by FTIR, and TG analysis. The equilibrium water uptake data was used to determine various network parameters. For all the samples synthesized, the swelling exponent “n,” initial diffusion coefficient D and average diffusion coefficient Dave were found to be in the range of 0.51–0.72, 3.16 to 7.14 × 10?6 cm2 min?1 and 94.16–120.56 cm2 min?1, respectively. The hydrogel demonstrated fair pH‐dependent swelling behavior, with nearly 20% swelling in the medium of pH 1.0 and 615% in the medium of pH 7.4 at 37°C, respectively. The gel showed excellent swelling–deswelling cycles which were interpreted quantitatively by first order kinetic swelling and deswelling models. Finally, the preliminary insulin release study, carried out in the media of varying pH, observed almost 16% release of entrapped drug in the simulating gastric fluid (SGF) of pH 1.0 in first 2 h and nearly 51% in next 6 h in simulating intestinal fluid(SIF) of pH 7.4 at 37°C. POLYM. ENG. SCI., 53:2129–2140, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
The most commonly applied methods for the treatment of used adsorbents is to recover them in acid/alkaline medium or direct enflame them. This work dealt with a new potential and economic method to utilize a waste adsorbent. Poly(AAc/AM/SH) superabsorbent hydrogels have proved to be a good adsorbent for Cu2+ ions and after adsorption the hydrogels were recovered in acid medium. In this report, the Cu2+ ion adsorbed hydrogel has not undergone any regeneration process and applied directly to phosphate ion adsorption. The Cu2+ ions‐loaded poly(AAc/AM/SH) hydrogels, were stable within a wide pH range and suitable for phosphate ion adsorption. The factors affecting the phosphate adsorption, such as pH, ionic strength, contact time, temperature, initial concentration of the phosphate ion, and coexisting ions were systematically investigated. The phosphate adsorption was highly pH dependent; and the maximum adsorption of 87.62 mg/g was achieved at pH 6.1. The adsorption data fitted the Langmuir adsorption isotherm better than the Freundlich isotherm. The concomitant anions show profounder adverse influence on phosphate ion adsorption of poly(AAc/AM/SH)‐Cu hydrogel and the effect follows the order citrate > sulfate > bicarbonate > chloride > nitrate. The thermodynamic parameters including ΔH°, ΔG°, and ΔS° for the adsorption processes of phosphate ions on the gel were also evaluated, and the negative ΔG° and ΔH° confirmed that the adsorption process was spontaneous and exothermic. The adsorption kinetic results suggest that the adsorption process was well described by the pseudo second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A novel pH‐sensitive hydrogel system composed of itaconic acid (IA) and N‐[3‐(dimethylamino) propyl] methacrylamide was designed. This system was prepared by aqueous copolymerization with N,N‐methylene bisacrylamide as a chemical crosslinker. The chemical structure of the hydrogels was characterized by Fourier transform infrared (FTIR) spectroscopy. The microstructure and morphology of the hydrogels were evaluated by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The SEM study of hydrogels on higher magnification revealed a highly porous morphology with uniformly arranged pores ranging from 40 to 200 μm in size. XRD analysis revealed the amorphous nature of the hydrogels, and it was found that an increase in the IA content in the monomer feed greatly reduced the crystallinity of the hydrogels. Swelling experiments were carried out in buffer solutions at different pH values (1.2–10) at 37°C ± 1°C to investigate their pH‐dependent swelling behavior and dimensional stability. An increase in the acid part (IA) increased the swelling ratio of the hydrogels. Temperature‐sensitive swelling of the hydrogels was investigated at 20–70°C in simulated intestinal fluid. The hydrogels swelled at higher temperatures and shrank at lower temperatures. 5‐Aminosalicylic acid (5‐ASA) was selected as a model drug, and release experiments were carried out under simulated intestinal and gastric conditions. 5‐ASA release from the poly N‐[3‐(dimethylamino) propyl] methacrylamide‐co‐itaconic acid‐80 (PDMAPMAIA‐80) hydrogel was found to follow non‐Fickian diffusion mechanism under gastric conditions, and a super case II transport mechanism was found under intestinal conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

16.
This work describes the preparation, the swelling properties and the potassium diclofenac (KDF) release profile of hydrogels of gum arabic (GA), N′,N′‐dimethylacrylamide, and methacrylic acid. In order to convert GA into a hydrogel, the polysaccharide was vinyl‐modified with glycidyl methacrylate. The hydrogels showed pH‐responsive swelling changes, which were more expressive in the basic environment. Release data of KDF were adjusted to a diffusion‐based kinetic model that provides an important insight on affinity of the drug for hydrogel and solvent, which may be the leading parameter for release of guest molecules from polymers. The KDF release from the hydrogels into simulated intestinal fluid decreases when the amount of modified GA increases. This was demonstrated to be due to the higher affinity of KDF for GA‐richer hydrogel, which makes the anti‐inflammatory release less favorable. The analysis of released drug half‐time (t1/2 = 16.10 and 21.51 h) indicated sustained release characteristics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43319.  相似文献   

17.
Alginic acid fiber was used as a novel adsorbent to remove methylene blue from aqueous solution, and adsorption mechanisms were investigated. System variables, including contact time, pH, temperature, and initial concentration were examined to investigate the effect on adsorption in batch experiments. The results showed that equilibrium reached in less than 20 min and pH significantly influenced the equilibrium value. Langmuir, Freundlich, and Temkin isotherm models were employed to analyse the isotherm behaviours. It was found the isotherm behaviours conform to Freundlich and Temkin models well, indicating a chemisorption process. Pseudo‐first‐order, pseudo‐second‐order, and intraparticle diffusion models were employed to investigate kinetic behaviours. The kinetic behaviour is best described by pseudo‐second‐order model. Thermodynamic parameters indicate that the process is spontaneous and exothermic.  相似文献   

18.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) [poly(NIPAM‐co‐SA)] hydrogels were modified with three different kind of surfactants (cationic, anionic, and nonionic) to study the effect on the swelling properties. The structural variation of the surfactant‐modified hydrogels was investigated in detail. The interaction between the surfactants and the hydrogel varies and strictly depends on the surfactant type. The variation in thermal stability of the modified surfactant hydrogels was investigated and compared with unmodified hydrogel. Further, the hydrogel swelling/diffusion kinetic parameters were investigated and diffusion of water into hydrogel was found to be of the non‐Fickian transport mechanism. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3423–3430, 2007  相似文献   

19.
In this article, we report on the extraction of Sr(II) ions from aqueous solution with a series of poly(N‐vinyl imidazole)‐based hydrogels. The hydrogels were synthesized by the crosslinking of N‐vinyl imidazole with four different crosslinkers with γ rays as initiators. The well‐characterized hydrogels were used as Sr(II) sorbents. Sr(II) uptake was determined with a colorimetric method with Rose Bengal anionic dye. Scanning electron microscopy–energy‐dispersive spectroscopy analysis of the Sr(II)‐loaded polymers was recorded to ascertain the uptake of Sr(II) ions. The experimental adsorption values were analyzed with the Freundlich and Temkin equations, and the kinetics of adsorption were investigated with a pseudo‐second‐order sorption kinetic model. The results show that the equilibrium data fit well in the Freundlich isotherm and followed a pseudo‐second‐order kinetic model. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
A novel TiO2 hydrogel cage model was built for the removal of methylene blue (MB), an organic pollutant. This TiO2 hydrogel cage was prepared with the biomass materials of hydroxyethyl cellulose (HEC) and carboxymethyl cellulose (CMC), and this hydrogel cage structure was characterized by scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. The contents of the encased TiO2 and its swelling properties with different CMC proportions of this hydrogel cage were studied to obtain a suitable crosslinking network structure and optimal synthesis conditions. Compared to an equivalent amount of pure TiO2, the much higher removal efficiency of MB with our prepared TiO2 hydrogel cage was attributed to the synergistic effect of the photocatalytic degradation for TiO2 and the adsorption enrichment for cellulose hydrogels. Furthermore, the adsorption kinetics of the intraparticle diffusion model were used to study the adsorption enrichment process of the TiO2 hydrogel cage. In addition, on the basis of the results of photocatalytic degradation and recycling experiments, excellent performances with respect to self‐cleaning, regenerative ability, and easy recovery, were shown for this HEC–TiO2–CMC cage material, which demonstrated ideal application potential for MB removal. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44925.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号