首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flame‐retardant polymer, dendritic tetramethylolphosphonium chloride (FR‐DTHPC), was prepared by condensation polymerization between THPC, the monomer we prepared, and boric acid. It was then characterized by Fourier transform infrared spectroscopy, intrinsic viscosity, and matrix assisted laser desorption ionization time of flight mass spectrometer. This FR‐DTHPC was used in the preparation of flame‐retardant ethylene propylene diene monomer (EPDM) composites. Different types of EPDM/FR‐DTHPC composites were prepared with different amounts of FR‐DTHPC. Then, the cure characteristic, tensile properties, flame‐retardance, and thermal stability were researched and compared. Results showed that the addition of this novel additive can improve some mechanical and flame‐retardant properties of EPDM composites. Mechanisms of reinforcing and flame‐retardance were proposed. The dendritic polymer may reduce the amount and size of voids in EPDM composites, and thus may increase their tensile properties. Meanwhile, the degradation products from nitrogen, phosphorus, and boric acid in FR‐DTHPC can increase the amount of carbonaceous layers, and thus can inhibit the pyrolysis degree of EPDM composites during burning and improve their flame‐retardant performance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40855.  相似文献   

2.
The objective of this study was to develop an environmentally friendly fire‐retardant polypropylene (PP) with significantly improved fire‐retardancy performance with a novel flame‐retardant (FR) system. The system was composed of ammonium polyphosphate (APP), melamine (MEL), and novel phosphorus‐based FRs. Because of the synergistic FR effects among the three FRs, the FR PP composites achieved a V‐0 classification, and the limiting oxygen index reached as high as 36.5%. In the cone calorimeter test, both the peak heat‐release rate (pHRR) and total heat release (THR) of the FR PP composites were remarkably reduced by the incorporation of the novel FR system. The FR mechanism of the MEL–APP–FR–PP composites was investigated through thermogravimetric analysis and char residue characterization, and the results reveal that the addition of MEL–APP–FRs promoted the formation of stable intumescent char layers. This led to the reduction of pHRR and THR and resulted in the improvement of the fire retardancy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45962.  相似文献   

3.
A novel poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) antistatic and flame‐retardant agent, poly(ethylene glycol) methacrylate/methyl methacrylate/diethyl allylphosphonate (PMMD), was synthesized from poly(ethylene glycol) methacrylate, methyl methacrylate, and diethyl allylphosphonate by free‐radical precipitation polymerization in the aqueous phase to improve the antistatic and flame‐retardant performance at the same time. Through adjustments of the molar ratios of the three monomers, various antistatic, flame‐retardant copolymers (PMMD) were synthesized. The molecular structure and thermal stability of PMMD were analyzed with Fourier transform infrared spectroscopy and thermogravimetric analysis. The electrical resistivity and flame‐retardant and mechanical properties of the ABS/PMMD composites were analyzed by a ZC90 megohmmeter, an oxygen index meter, a vertical burning tester, a memory impact testing machine, and a tensile testing machine. The morphology of PMMD in the ABS blends was characterized with scanning electron microscopy. The compatibilities of PMMD and ABS were characterized by the calculation of the thermodynamic work of adhesion via the measurement of the contact angle. The results show that the antistatic and flame‐retardant performance of ABS were greatly improved by the PMMD copolymer and the mechanical properties of ABS showed little reduction. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44126.  相似文献   

4.
In this work, an efficient approach to improving the fire retardancy and smoke suppression for intumescent flame‐retardant polypropylene (PP) composites is developed via incorporating functionalized sepiolite (organo‐modified sepiolite [ONSep]). The PP composites with different amounts of intumescent flame retardants and ONSep were prepared by melt compounding. The morphology, thermal behavior, fire retardancy, smoke suppression, and mechanical property of flame‐retardant PP composites were studied. The results indicate an appropriate amount of ONSep in the flame‐retardant PP composites can increase thermal degradation temperature and char formation as well as a reduction of the peak heat release rate and total heat release; moreover, the addition of ONSep significantly decreases the CO production, total smoke production, smoke production rate, and smoke temperature. Simultaneously, the impact strength of intumescent flame‐retardant PP composite is also maintained by introducing an appropriate amount of ONSep as compared with that without ONSep.  相似文献   

5.
The newly prepared LaMnO3 was introduced as a novel perovskite composite metal oxide catalyst for the first time to improve the flame retardancy of flame‐retarded (FR) polypropylene with intumescent flame‐retardant (IFR) system consisting of ammonium polyphosphate (APP), pentaerythritol (PER), and melamine (MA). The synergistic effects of LaMnO3 catalyst on the performance of IFR PP composites as well as the corresponding catalytically synergistic FR mechanism were investigated. The experimental results show that the incorporated LaMnO3 catalyst plays an excellently catalytic and synergistic part in improvement of the flame retardancy of FR PP system. Compared with FR system without LaMnO3, the incorporation of only 0.5 wt% LaMnO3 into PP FR system could obviously improve the UL‐94 level from failure to V‐0 rating and decrease the micro‐scale calorimetry parameters peak heat release rate and heat release capacity. The remarkable improvement in flammability can be ascribed to the catalytic carbonization effect of LaMnO3 on the intumescent flame retardant PP system. The incorporation of appropriate amount of LaMnO3, on one hand, could improve the thermal stability of FR PP material, and on the other hand, could also act as nuclei to induce formation of the continuous, compact and smooth condensed phase intumescent charred layer with radialized spherulite‐like structure. As a result, the char yield and also the quality of the formed condensed phase charred layers are correspondingly enhanced remarkably, which is beneficial to improvement of the FR properties. POLYM. COMPOS., 35:2390–2400, 2014. © 2014 Society of Plastics Engineers  相似文献   

6.
吕强 《工程塑料应用》2021,49(1):30-33,39
以玻纤增强聚丙烯(GFPP)为基体,加入无卤阻燃剂FR–1420、永久抗静电剂P–22制备复合材料,考察了体系的阻燃性能、永久抗静电性能、力学性能和热稳定性能.结果表明,FR–1420单独添加20%时,可使GFPP阻燃等级达到UL–94 V0级;P–22单独添加20%,可使GFPP表面电阻率下降至1.4×108Ω.当阻...  相似文献   

7.
Polypropylene (PP) composites that contain poly(aniline) (PANI) and ammonium polyphosphate crystalline form II (APP‐II) have both antistatic and flame‐retardant properties. In the present study, double anti‐functional PANI was prepared via in situ polymerization in the presence of APP‐II. Analysis of the Fourier transform infrared spectra demonstrated that PANI was synthesized successfully with APP‐II and that modified PANI (PANI‐APP) was obtained. Next, PP/PANI‐APP/chlorinated poly(propylene) (CPP) and PP/PANI/CPP composites were prepared. The results showed that the volume resistivity of the PP/PANI‐APP/CPP composite was at least 100 times less than that of the PP/PANI/CPP composite. The microstructures of the corresponding composites were investigated carefully by scanning electron microscopy and wide angle X‐ray diffraction. The areas of the conductive regions and the percentage crystallinity of PP in the PP/PANI‐APP/CPP composite were distinctly higher than those in the PP/PANI/CPP composite, i.e., by about 10% and 7%, respectively. In addition, experimental analyses of the limiting oxygen index and thermogravimetry showed that the PP/PANI‐APP/CPP composite had advantages compared with PP in terms of its flame‐retardant properties thermal stability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40732.  相似文献   

8.
Natural fiber composites have been prepared by grafting hydrophobic monomer methyl methacrylate (MMA) onto chemically modified rice straw (RS) using complex initiating system [CuSO4/glycine/ammonium persulfate (APS)] in an aqueous medium with and without the additive, sodium silicate (SS). The chemically modified RS, RS‐g‐PMMA, and RS‐g‐PMMA/SS composite have been characterized by FT‐IR, and their morphology was studied by scanning electron microscopy (SEM). The thermal behavior and tensile properties of the samples have been studied, and the flame retardant properties have also been evaluated by limiting oxygen index (LOI) test and cone calorimetry. The biodegradation and water absorbency have been carried out for its ecofriendly nature and better commercialization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The thermal stability and thermal oxidative degradation kinetics of polypropylene (PP) and flame‐retardant PP composites filled with untreated and treated magnesium hydroxide (MH) in air were studied by thermogravimetric analysis (TGA). The effect of the heating rate in dynamic measurements (5°C–30°C/min) on kinetic parameters such as activation energy was also investigated. The Kissinger and Flynn–Wall–Ozawa methods were used to determine the apparent activation energy for the degradation of neat PP and flame‐retardant PP composites. The results of TGA showed that the addition of untreated or treated MH improved the thermal oxidative stability of PP in air. The kinetic results showed that the apparent activation energy for degradation of flame‐retardant PP composites was much higher than that of neat PP, suggesting that the flame retardant used in this work had a great effect on the mechanisms of pyrolysis and combustion of PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1978–1984, 2007  相似文献   

10.
Bis(1H, 1H, 2H, 2H‐perfluoro‐octyl)methylenesuccinate (FOM)/ethyl acrylate (EA)/methyl methacrylate (MMA) copolymer (FOME) latexes, FOM/butyl acrylate (BA)/MMA copolymer (FOMB) latexes, and FOM/octyl acrylate (OA)/MMA copolymer (FOMO) latexes were synthesized by continuous emulsion polymerization. Solution polymerization was also carried out to prepare FOMB. The influences of fluorine content and curing conditions on the surface properties of polymer films were discussed. The water and oil repellency of cotton fabrics treated with the FOM copolymers was better than that of conventional poly(fluoroalkyl acrylate)s containing the same fluorinated chain. The polymer films or the treated fabrics were characterized by Fourier transform infrared, scanning electron microscope, atomic force microscopy, thermogravimetric analysis, x‐ray photoelectron spectrometry, and wide angle x‐ray diffraction. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci, 2013  相似文献   

11.
A novel flame‐retardant synergist, chitosan/urea compound based phosphonic acid melamine salt (HUMCS), was synthesized and characterized by Fourier transform infrared spectroscopy and 31P‐NMR. Subsequently, HUMCS was added to a fire‐retardant polypropylene (PP) compound containing an intumescent flame‐retardant (IFR) system to improve its flame‐retardant properties. The PP/IFR/HUMCS composites were characterized by limiting oxygen index (LOI) tests, vertical burning tests (UL‐94 tests), microscale combustion calorimetry tests, and thermogravimetric analysis to study the combustion behavior and thermal stability. The addition of 3 wt % HUMCS increased the LOI from 31.4 to 33.0. The addition of HUMCS at a low additive amount reduced the peak heat‐release rate, total heat release, and heat‐release capacity obviously. Furthermore, scanning electron micrographs of char residues revealed that HUMCS could prevent the IFR–PP composites from forming a dense and compact multicell char, which could effectively protect the substrate material from combusting. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40845.  相似文献   

12.
基于阻燃剂ANTI?660及抗静电剂单苷酸甘油酯(Gm)制备了聚丙烯(PP)复合材料,采用水平垂直燃烧测试仪、氧指数测试仪、表面电阻测定仪、万能试验机和摆锤式冲击试验机等研究了阻燃剂和抗静电剂对复合材料阻燃性能、抗静电性能和力学性能的影响。结果表明,在阻燃剂含量为18.0 %(质量分数,下同),抗静电剂含量为2.0 %时,复合材料的极限氧指数(LOI)达到26.0 %,UL 94测试达到V?0级,表面电阻下降到1.7×1012 Ω;添加阻燃抗静电体系的复合材料相比于添加纯阻燃剂的复合材料整体力学性能改变不明显,但仍具有较好的综合力学性能。  相似文献   

13.
Poly(n‐octadecyl acrylate) (PnOA) was used as an interfacial compatibilizer for improving the performance of polypropylene/alumina trihydrate (PP/ATH) composites in this study. The influences of PnOA on the properties of fire‐retardant PP/ATH composites were evaluated by tensile and impact tests, differential scanning calorimetry (DSC), scanning electron microscope (SEM) observation, thermogravimetric analysis, and mass flow rate tests. The results suggested that PnOA significantly improved the mechanical properties and rheological behavior of the PP/ATH composites. SEM observation helped formulate reasons for these differences. A pronounced difference in DSC curves was detected for the composites with and without PnOA when the temperature is near the melt temperature of PnOA. Tentative theoretical explanation was also provided based on related DSC and SEM analysis. PnOA is a promising new compatibilizer for polyolefin composites with aluminum trihydrate as a flame retardant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A hyperbranched derivative of triazine group (EA) was synthesized by elimination reaction between ethylenediamine and cyanuric chloride. The different‐mass‐ratio EA and ammonium polyphosphate (APP) were mixed and blended with polypropylene (PP) in a constant amount (25%) to prepare a series of EA/APP/PP composites. The component ratio effect of EA/APP on the flame‐retardant property of the EA/APP/PP composites was investigated using the limiting oxygen index (LOI), vertical burning (UL‐94), and cone calorimetry tests. Results indicated that the EA/APP/PP (7.50/17.50/75.00) composite with the appropriate EA/APP mass ratio had the highest LOI, UL94 V‐0 rating, lowest heat release rate, and highest residue yield. These results implied that the appropriate EA/APP mass ratio formed a better intumescent flame‐retardant system and adequately exerted their synergistic effects. Furthermore, average effective combustion heat values revealed that EA/APP flame retardant possessed the gaseous‐phase flame‐retardant effect on PP. Residues of the EA/APP/PP composites were also investigated by scanning electron microscopy, Fourier‐transform infrared, and X‐ray photoelectron spectroscopy. Results demonstrated that the appropriate EA/APP mass ratio can fully interact and lock more chemical constituents containing carbon and nitrogen in the residue, thereby resulting in the formation of a dense, compact, and intumescent char layer. This char layer exerted a condensed‐phase flame‐retardant effect on EA/APP/PP composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41006.  相似文献   

15.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
研究了节能灯用玻璃纤维(GF)增强阻燃聚对苯二甲酸丁二酯(PBT)材料,分别探讨了新的阻燃体系,不同丙烯酸酯类增韧剂对其影响和材料的抗黄变问题。结果表明,新的阻燃体系溴代三嗪/三氧化二锑/OMMT阻燃效果较好,增韧剂中丙烯酸酯类接枝甲基丙烯酸缩水甘油酯(GMA)AX8900效果最好,其次为核壳结构丙烯酸酯类2M,最差为接枝MAH的丙烯酸酯类3M,但三者增韧效果差距不明显。抗黄变母粒的添加使得GF增强阻燃PBT材料在氙灯老化试验后颜色基本不变黄。  相似文献   

17.
The compatibilization effect of ethylene‐1‐octene copolymer grafted with glycidyl methacrylate (POE‐g‐GMA) as an interface compatibilizer on the mechanical and combustion properties, and the morphology and structures of the cross sections of ammonium polyphosphate (APP)–filled poly(propylene) (PP) were investigated by thermogravimetry, dynamic mechanical analysis, and differential scanning calorimetry. The results indicated that the toughness of the PP/APP composites increased rapidly with adding POE‐g‐GMA; the dynamic mechanical spectra revealed that the increase of the toughness was closely related to the peaks of loss modulus (E″) and mechanical loss (tan δ). The improvement of the dispersion of APP in the PP matrix was attributed to the addition of POE‐g‐GMA; it was found that the interfacial adhesion between the filler and matrix was enhanced when the grafting material was added to the composites. Under such circumstances, the ratio of char formation was increased when the PP composites were heated, although the content of flame retardant was not changed, so the flame retardance of the material was improved. The addition of POE‐g‐GMA increased the rate of crystallization. At the same time, the degree of crystallinity and the temperature at the beginning of crystallization were decreased, although exerting little influence on the melt behavior of the crystallization of the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 412–419, 2004  相似文献   

18.
The synergistic flame‐retardant (FR) effect of 1,1′‐bis(4‐hydroxyphenyl)‐metheylene‐bis(9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide‐2‐hydroxypropan‐1‐yl) (DPOH) and aluminum diethylphosphinate (AlPi) composites on glass fiber reinforced polyamide 66 (PA) was investigated by limiting oxygen index (LOI) tests, vertical burning (UL94) tests, and cone calorimeter tests. DPOH/AlPi system with 1:1 mass ratio increased UL94 ratings, suppressed heat release rate and increased residue yields of PA composites, and DPOH/AlPi system also imposed high LOI values and lower total heat release values to PA composites. All these results verified excellent synergistic FR effect between DPOH and AlPi. The reason of DPOH/AlPi system with higher flame‐retardant efficiency was caused by the quenching effect as good as that of DPOH and also by the higher charring effect than that of AlPi. DPOH/AlPi system possesses good flame retardancy in gas phase and also the strengthened FR effect in condensed phase compared with DPOH and AlPi alone, which led to excellent synergistic FR effect between the two components DPOH and AlPi. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45126.  相似文献   

19.
In this article, co‐microencapsulated ammonium polyphosphate (APP) and aluminum hydroxide (ATH) [M(A&A)] was prepared by using 4,4'‐diphenylmethane diisocyanate (MDI) and melamine (MEL) via in situ surface polymerization method. The chemical composition of M(A&A) was confirmed by Fourier transform‐infrared spectra (FT‐IR). Thermal behavior and surface morphology of M(A&A) were systematically analyzed by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. Water solubility tests indicate that water solubility of M(A&A) decreases greatly than un‐microencapsulated ones. Besides, flame retardant properties of polypropylene (PP) compositing with M(A&A) were investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94) and cone calorimeter. The results demonstrate the LOI value of PP composites is improved after combining with co‐microencapsulated flame retardants. Compared with PP/A&A, the peak heat release rate of PP/M(A&A) decreases from 210 to 120 kW/m2 at the same flame retardant loading level. Moreover, in order to investigate the flame retardant mechanism, the char residue of PP composites after combustion was studied by optical photos, X‐ray photoelectron spectroscopy (XPS) spectra and FT‐IR. POLYM. COMPOS., 35:715–729, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
Co‐microencapsulated ammonium polyphosphate and dipentaerythritol [M(A&D)] was prepared using a melamine‐formaldehyde (MF) resin by in situ polymerization method, and characterized by XPS. The co‐microencapsulation of ammonium polyphosphate and dipentaerythritol (DPER) leads to a great improvement in water solubility of the additives. The flame retardant effect of M(A&D) in polypropylene (PP) is evaluated using limiting oxygen index (LOI) and UL 94 test, and the water resistance of the PP/M(A&D) composites is also studied. The flame retardant properties and water resistance of the PP/M(A&D) composites are much better than the ones of the PP/APP/DPER composites. Moreover, the thermal stability of the PP/M(A&D) composites is improved compared with the PP/APP/DPER composites. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号