首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and thermal properties of polyamide‐1010 (PA1010), treated at 250°C for 30 min under pressures of 0.7–2.5 GPa, were studied with wide‐angle X‐ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24° was enhanced, whereas the peak at approximately 20° was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208°C for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0–1.2 GPa. Only a broad diffraction peak centered at approximately 20° was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm?1. The N? H stretching vibration band at 3305 cm?1 was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2522–2527, 2002  相似文献   

2.
With the aim to utilize the waste biomass of wheat straw, all‐straw‐fiber composites were elaborately manufactured though producing plastic benzylated wheat straw (BWS) as matrix and reinforced by additional straw fibers (ASF). The extent of benzylation for wheat straw was greatly improved with the aid of ball milling pretreatment for 4 h. BWS yielded higher weight percent gain (WPG) under the same reaction conditions with the benzylation of wood flour, lower glass transition temperature (Tg) as well as better flowability upon heating compared to benzylated mulberry branches (BMB) with comparable WPG. All‐straw‐fiber composites performed higher ASF loading capacity and better mechanical properties with optimum ASF content than BMB based composites and by benzylation decreased water absorption significantly. SEM provided evidence for strong adhesion in the interface between BWS and ASF. From the overall performance, the All‐straw‐fiber composites can be regarded as a potential alternative to wood plastic composites. POLYM. COMPOS., 35:419–426, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
The reaction of urea with formaldehyde is the basis for the production of urea‐formaldehyde (UF) resins which are widely applied in the wood industry. The presence of ether‐bridged condensation products in the UF resin reaction system is an open question in the literature. It is addressed in the present work. The N,N′‐dimethylurea‐formaldehyde model system was studied since it is chemically similar to the UF resin reaction system but allows for a simple elucidation of all reaction products. It was analyzed by 13C‐NMR spectroscopy and ESI‐MS. In corresponding NMR and MS spectra, peaks due to methoxymethylenebis(dimethyl)urea and its hemiformal were observed. 13C‐13C gCOSY analysis was conducted using labeled 13C‐formaldehyde. The correlation spectra showed evidence for an ether‐bridged compound and mass spectra exhibited peaks agreeing with labeled methoxymethylenebis(dimethyl)urea and its hemiformal. Methoxymethylenebis(dimethyl)urea was characterized in N,N′‐dimethylurea‐formaldehyde systems in acidic and slightly basic media. As urea is very similar to N,N′‐dimethylurea, the results of this work strengthen the assumption that ether‐bridged condensation products are likely to form in UF resins. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
In this article, high density polyethylene/styrene‐ethylene‐butylene‐styrene block copolymer blends (HDPE/SEBS) grafted by maleic anhydride (HDPE/SEBS‐g‐MAH), which is an effective compatibilizer for HDPE/wood flour composites was prepared by means of torque rheometer with different contents of maleic anhydride (MAH). The experimental results indicated that MAH indeed grafted on HDPE/SEBS by FTIR analysis and the torque increased with increasing the content of maleic anhydride and dicumyl peroxide (DCP). Styrene may increase the graft reaction rate of MAH and HDPE/SEBS. When HDPE/SEBS MAH was added to HDPE/wood flour composites, tensile strength and flexural strength of composites can reach 25.9 and 34.8 MPa in comparison of 16.5 and 23.8 MPa (without HDPE/SEBS‐g‐MAH), increasing by 157 and 146%, respectively. Due to incorporation of thermoplastic elastomer in HDPE/SEBS‐g‐MAH, the Notched Izod impact strength reached 5.08 kJ m?2, increasing by 145% in comparison of system without compatibilizer. That HDPE/SEBS‐g‐MAH improved the compatibility was also conformed by dynamic mechanical measurement. Scanning electron micrographs provided evidence for strong adhesion between wood flour and HDPE matrix with addition of HDPE/SEBS‐g‐MAH. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Lignocellulosic biomass is regarded as one of the most abundant and sustainable resources for the development of bio-based plastics. The esterification of wood with phthalic anhydride (PA) yields low content due to lack of an efficient modification medium. In the present study, 1-methylimidazole was used as a catalytic medium for the highly efficient esterification of waste lignocellulosic biomass (poplar wood, mulberry wood, and wheat straw) with PA. After modification, the wood particles were plasticized and molded via injection molding. Analyses of the weight percent gain showed that under the same conditions, poplar wood, which has a soft and loose structure, presented the highest extent of esterification, whereas mulberry wood, which has a tight texture, had the lowest extent of esterification. Mulberry wood-based plastics exhibited the best performance in terms of flexural and tensile strength. Notably, short reaction time was favorable to produce bio-based plastics that were light in color. FT-IR spectroscopy and solid-state 13?C NMR spectroscopy confirmed the chemical structures of the esterified products. Dynamic mechanical analysis was used to identify the storage modulus and the damping factor of the esterified products. Analyses of the morphologies of the materials demonstrated different composite structures for the bio-based plastics, which played an important role in their mechanical performance.  相似文献   

6.
Paper mill sludge (PMS) is a waste material from pulping. In this article it was used to replace part of a wood fiber (WF) filler to reinforce high‐density polyethylene (HDPE). The properties of the PMS/WF/HDPE composites were investigated. When half of WF was replaced with PMS, the bending strength and modulus of WF/HDPE composites decreased by 16.08% and 29.91%, respectively, but their impact strength increased by 11.31%. Dynamic mechanical analysis demonstrated that with PMS addition, the storage modulus decreased and the loss tangent increased. Although the flexural properties of the PMS/WF/HDPE composites decreased compared to WF/HDPE composite, they still had satisfactorily high strengths. The 30:30:36 PMS/WF/HDPE composite presented bending and impact strengths of 61.00 MPa and 12.11 kJ m−2, respectively. The 50:20:26 PMS/WF/HDPE composite presented bending and impact strengths of 55.02 MPa and 10.37 kJ m−2, respectively. Rheological test proved that substituting part of WF with PMS would not affectmanufacture processing. This study indicated that paper mill sludge could be used in wood plastic composites, which would reduce pollution from paper manufacturing. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

8.
Mercerized wood species were impregnated with N,N‐dimethylacetamide. Their Fourier transform infrared spectra then showed enhanced absorption at 1419 cm?1 (? C? /CH3), and the 1267‐cm?1 (? N? /CH3) stretching band confirmed the occurrence of a modification reaction. Thermogravimetric investigation of the resultant wood polymer composites (WPCs) indicated a better thermal stability in comparison with that of the raw wood. The dynamic Young's modulus of the WPCs was significantly increased compared with that of raw wood. After modification, analysis by scanning electron microscopy showed porous cells of raw wood filled with the polymer, which led to the better stability of WPCs. Analysis by XRD indicated that the crystallinity of WPCs increased because of an increase in the stiffness and the thermal stability of the composites. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

10.
Resorcinol‐formaldehyde adhesives can reinforce stress fractures that appear from wood surface preparation. Researchers have found that applying the resorcinol‐formaldehyde prepolymer, hydroxymethylated resorcinol, to the surface of wood improves the bond strength of epoxy and polyurethane adhesives to wood. Hydroxymethylated resorcinol is thought to plasticize lignin components and stabilize stress fractures through reactions with lignin subunits and hemicelluloses in wood. In this study, a dilute solution of hydroxymethylated resorcinol (HMR) is cured in the presence of a crude milled‐wood lignin (cMWL) from Acer saccharum and subsequently dissolved in dimethylsulfoxide‐d6 to delineate reactivity with lignin and O‐acetyl‐(4‐O‐methylglucurono)xylan using solution‐state NMR spectroscopy. 1H–13C single‐bond correlation NMR experiments revealed that the HMR only formed 4,4′‐diarylmethane structures with itself in the presence of the cMWL; the 2‐methylols that formed remained free and did not crosslink with resorcinol. Cured HMR resin formed both 4,4′‐ and 2,4‐diarylmethane structures, confirming that the presence of lignin and O‐acetyl‐(4‐O‐methylglucurono)xylan hinders crosslinking at the C‐2 position. No evidence of reactivity between HMR and lignin subunits was found. New peaks consistent with ester linkages were observed in 13C‐NMR spectra of the cMWL sample treated with HMR that may be attributable to HMR moieties condensing with glucuronic acid substituents. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45398.  相似文献   

11.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/wood‐flour foams with low density (< 0.2 g/cm3) using chemical blowing agent. Stearic acid was used as a compatibilizer to improve not only the compatibility between wood‐flour and EVA but also the compatibility between moisture and EVA in this study. The effects of wood‐flour content on the density and mechanical properties of EVA/wood‐flour foams were studied. Also, the effects of content of stearic acid on the cell morphology of EVA/wood‐flour foams were investigated. The shape of EVA/wood‐flour foams with 20% wood‐flour content becomes more uniform with increasing content of stearic acid. The most stabilized shape of the foams is obtained with 5 wt % stearic acid content. The density of EVA/wood‐flour foams with 20% wood‐flour and 5 wt % stearic acid is 0.11 g/cm3. With increasing content of stearic acid, more gas remains in the EVA matrix and consequently, average cell size and density increase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40894.  相似文献   

12.
Fast-growing eucalyptus (Eucalyptus robusta Smith) and poplar (Populus tomentosa Carr.) were impregnated with melamine–urea–formaldehyde (MUF) resin by vacuum. The weight percent gain (WPG), water absorption, bulking rates, anti-swelling efficiency (ASE), and density distribution of the impregnated wood were examined. The characterization of eucalyptus and poplar was performed by Fourier transform infrared spectroscopy and scanning electron microscope. WPG of the impregnated wood increased with increasing concentrations of MUF resin, however, rate of water absorption was nearly the reverse. The impregnated eucalyptus wood showed low WPG (at most 23.03%) but achieved high ASE (52.02%) values. Although a relatively high WPG (up to 59.02%) was achieved by modified poplar, the ASE (50.21%) value was not high. This was owing to the differences in the microstructure of eucalyptus and poplar. The density of impregnated wood was remarkably increased (eucalyptus from 0.48 to 0.54?g/cm3, poplar from 0.38 to 0.49?g/cm3).  相似文献   

13.
This study focuses on the performance characteristics of wood/short carbon fiber hybrid biopolyamide11 (PA11) composites. The composites were produced by melt‐compounding of the fibers with the polyamide via extrusion and injection molding. The results showed that mechanical properties, such as tensile and flexural strength and modulus of the wood fiber composites were significantly higher than the PA11 and hybridization with carbon fiber further enhanced the performance properties, as well as the thermal resistance of the composites. Compared to wood fiber composites (30% wood fiber), hybridization with carbon fiber (10% wood fiber and 20% carbon fiber) increased the tensile and flexural modulus by 168% and 142%, respectively. Izod impact strength of the hybrid composites exhibited a good improvement compared to wood fiber composites. Thermal properties and resistance to water absorption of the composites were improved by hybridization with carbon fiber. In overall, the study indicated that the developed hybrid composites are promising candidates for high performance applications, where high stiffness and thermal resistance are required. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43595.  相似文献   

14.
Biodegradable plastics were synthesized for the effective use of sago starch‐extraction residue, which has been discarded as a waste. Two types of esterified sago starch‐extraction residue, P‐SP and L‐SP, were obtained. It had black color for P‐SP160 (esterified by palm oil) to light yellow color for L‐SP80 (esterified by lauric acid) and showed high carbon content, ranging from 399.3 to 537.1 g kg−1. Biodegradable plastics from the residue, which had high esterification degree showed thermoplasticity and slower decomposition in Andisols in Japan and Inceptisols in Philippines. The esterification degrees of P‐SP160 and L‐SP were 3.23 and 2.95 to 5.18 mmol g−1, respectively. In addition, L‐SP80 exhibited the most appropriate thermal softening behavior by heating. The cumulative decomposition of P‐SP160 in Andisols and Inceptisols showed 16.7 and 32.8% of total carbon during 31 day of the incubation. On the other hand, the decomposition rates of L‐SP80 in Andisols and Inceptisols were less than 10% of total carbon during 31 day of the incubation. The addition of triacetin as plasticizer to P‐SP160 and L‐SP80 remarkably influenced the decomposition rate of both molded P‐SP160 and L‐SP80. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Summary: By using DSC, 13C CP/MAS NMR and SEM, we studied the physical properties and chemical structure of silk fibers grafted with methacrylamide (MAA). At a given MAA concentration, the inverse of fiber weight gain linearly increased with increasing square root of the initiator concentration, and at a given initiator concentration the fiber weight gain increased with increasing MAA concentration. 13C CP/MAS NMR demonstrated that the primary and secondary structure remained unchanged, regardless of MAA grafting, implying the poor compatibility and the lack of new additional hydrogen bonding between the silk fiber and the MAA graft polymer. The degree of grafting in MAA‐grafted silk fiber (the accurate amount of actually loaded MAA polymer within the fiber matrix) can be evaluated from determination of the ratio of heat capacities calculated from two individual endothermic DSC peaks of silk fibroin and MAA polymer. The major endothermic peaks attributable to thermal degradation of the silk fiber and MAA graft polymer shifted to a higher temperature with increasing fiber weight gain by grafting. These findings are useful for the industrial production of grafted silk fiber with higher thermal stability.

CP/MAS spectra for poly(MAA) grafted silk and control silk fiber.  相似文献   


16.
Composites composed of rubber, sepiolite fiber, and resorcinol–formaldehyde latex‐coated aramid short fibers were prepared. Mechanical and morphological characterizations were carried out. To investigate the effect of interfacial debonding on the failure behavior of short‐fiber‐reinforced rubber composites, a micromechanical representative volume element model for the composites was developed. The cohesive zone model was used to analyze the interfacial failure. We found that computational results were in good agreement with the experimental results when the interfacial fracture energy was 1 J/m2 and the interfacial strength was 10 MPa. A parametrical study on the interface and interphase of the composite was conducted. The results indicate that a good interfacial strength and a choice of interphase modulus between 40 and 50 MPa enhanced the ductile behavior and strength of the composite. The ductile properties of the composite also increased with increasing interfacial fracture energy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41672.  相似文献   

17.
Solid‐state nuclear magnetic resonance (S‐NMR) can reveal much useful information, including conformations, stereoregularity, defect structures, and comonomer sequence. S‐NMR is especially useful for revealing microstructural differences that can alter local polymer chains. A series of bifunctional chelating/ion‐exchange resins, containing differing ratios of iminodiacetic acid to acetic acid, were synthesized. Cross‐polarization magic‐angle spinning (CP/MAS) 13C‐NMR was employed to measure conformation changes both before and after the bonding of ligands and lead ion adsorbed on bifunctional chelated/ion‐exchange resins in this investigation. From the 13C‐NMR spectra, as the lead ion was adsorbed by the iminodiacetic acid chelating group, the motion of molecular chain would be inhibited and the resonance peaks of the carboxylate anion at 170 ppm would shift downfield. Compared to the FTIR results, the downfield shift of the resonance peaks indicated that the bonding of carboxylate anion and lead ion adsorbed displayed an ionic trend. Furthermore, the bonding of the carboxylic group and lead ion adsorbed changed from ionic to covalent as the chelating group in bifunctional/ion‐exchange resins decreased. The linear relationship between the areas of those resonance peaks and the amount of lead ion adsorbed was obtained from the spectra fitting. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 919–928, 2002  相似文献   

18.
Dynamic modulus of elasticity (MoE) and shear modulus of wood‐filled polypropylene composite at various filler contents ranging from 10% to 50% was determined from the vibration frequencies of disc‐shaped specimens. Wood filler was used in both fiber form (pulp) and powder form (wood flour). A novel compatibilizer, m‐isopropenyl‐α,α‐dimethylbenzyl‐isocyanate(m‐TMI) grafted polypropylene with isocyanate functional group was used to prepare the composites. A linear increase in dynamic MoE, shear modulus, and density of the composite was observed with the increasing filler content. Between the two fillers, wood fiber filled composites exhibited slightly better properties. At 50% filler loading, dynamic MoE of the wood fiber filled composite was 97% higher than that of unfilled polypropylene. Halpin‐Tsai model equation was used to describe the changes in the composite modulus with the increasing filler content. The continuous improvement in elastic properties of the composites with the increasing wood filler is attributed to the effective reinforcement of low‐modulus polypropylene matrix with the high‐modulus wood filler. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1706–1711, 2006  相似文献   

19.
A series of novel quartz‐fiber‐cloth‐reinforced polyimide substrates with low dielectric constants were successfully prepared. For this purpose, the A‐stage polyimide solution was first synthesized via a polymerization‐of‐monomer‐reactant procedure with 2,2′‐bis(trifluoromethyl)benzidine and 3,3′,4,4′‐oxydiphthalic anhydride as the monomers, and cis?5‐norbornene‐endo‐2,3‐dicarboxylic anhydride as the endcap. Then, an A‐stage polyimide solution (TOPI) was impregnated with quartz‐fiber cloth (QF) to afford the prepregs, which were thermally molded into the final substrate composites. The influence of the curing temperature and the resin content on the mechanical properties of the composite were examined. The composites exhibited a high glass‐transition temperature over 360°C, a low and steady dielectric constant below 3.2 at a test frequency of 1–12 GHz, and a volume resistance over 1.8 × 1017 Ω cm. Meanwhile, they also showed a high mechanical strength with flexural and impact strengths in ranges 845–881 MPa and 141–155 KJ/m2, respectively. The excellent mechanical and thermal properties and good dielectric properties indicated that they are good candidates for integrated circuit packaging substrates. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42358.  相似文献   

20.
The environmental issues associated with the mass discarding of waste plastics in the Philippines have significantly raised for the past decade. However, this country is a home to many natural fibers which necessitates the development of ecofriendly materials to diminish the environmental footprint of polymers. High‐density polyethylene (HDPE) was filled with floured untreated and 5 wt % alkaline‐treated Salago fiber via melt compounding. The physical and mechanical characteristics of both types of composites were measured and compared. The composite filled with 30 wt % untreated fiber became very brittle, showing tensile strength and impact resistance of 15.8 MPa and 4.9 kJ/m2, respectively. Alkaline treatment improved the mechanical properties of untreated composites, but not above the value of virgin HDPE. Nevertheless, the flexural strength of treated composites exceeded that of the virgin HDPE. Untreated composites absorbed water twice as the treated ones. Finally, morphological and fractography inspection on tensile and flexural test specimens showed improvement made by treatment on the interfacial adhesion between fiber and thermoplastic, corroborating the results from mechanical properties test. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46479.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号