首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, highly stable selenium nanoparticles (SeNPs) were padded onto fabric to obtain, for the first time, antifungal and antibacterial fabric. SeNPs are prepared from a simple food‐grade redox system by using polysaccharide–protein complexes (PSPs) isolated from the mushroom sclerotia of Pleurotus tuber‐regium (tiger milk mushroom) as a modifier or stabilizer. The novel PSP–SeNPs are highly stable, size‐controllable, and water‐dispersible. Different amounts of PSP–SeNPs were applied onto fabric by using the pad–dry–cure method. It was found that the fabric treated with PSP–SeNPs can inhibit more than 99.7% of Trichophyton rubrum growth over a testing period of 7 days. The inhibition of Staphylococcus is effective in the first 12 h. The fabric treated with PSP–SeNPs is a promising material that can potentially be used inside shoes as insoles or shoe material to reduce the possibility of tinea pedis infection usually caused by the T. rubrum fungus. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40728.  相似文献   

2.
A three‐layer functional coating was prepared through layer‐by‐layer (LbL) assembly and a sol–gel process. The multilayered coating was composed of a phytic acid (PA) coating dipped between two layers of flexible polysiloxane coatings and was deposited on the polyester fabric by LbL assembly. Flammability tests indicated that the multilayer coating prevented droplet generation during combustion. The PA also absorbed the reactive free radicals to reduce the flame‐burning rate. After being soaked for only 20 min in PA solution, the fabric exhibited self‐extinguishing properties and antidroplet effect during the vertical flame test, while cone calorimetry confirmed that the coated fabric exhibited a 65% decrease in the peak heat release rate and reduced the total amount of smoke released by 72%. After washing the coated fabric 45 times, there was no significant decrease in the phosphorus content and the limiting oxygen index of coated fabrics. Thus, the coating synthesized in this study is an effective method of constructing durable, functional coatings on the surface of fabrics. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46414.  相似文献   

3.
A series of microencapsulated blends of waterborne polyurethane (WBPU) as a matrix polymer and phase change material octadecane as a domain material were prepared in the presence of emulsifier. Nylon fabrics were coated with the coating materials formulated from microencapsulated blends, thickener, and hardener. The morphology and thermal behaviors of microencapsulated octadecane and WBPU/octadecane‐coated nylon fabrics were investigated using SEM, DSC, and KES‐F7. The size of octadecane microspheres increased with increasing octadecane contents. However, the size of microcsphere (1–6 μm) decreased with increasing emulsifier contents. ΔHfusion, ΔHcrystallization, and their filling efficiencies of octadecane in film samples were found to increase with increasing microencapsulated blends, thickener, and hardener contents. Especially, thickener and hardener could function in trapping microencapsulated octadecane. Thermal characteristic Qmax (J/cm2 s) values of WBPU/octadecane‐coated nylon fabrics are much higher than those of the control nylon fabric and WBPU‐coated nylon fabrics, indicating that the nylon fabrics coated with WBPU/octadecane blends have cooler touch sensation compared with nylon fabrics and WBPU‐coated nylon fabrics. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1596–1604, 2005  相似文献   

4.
A coating of Nylon 6,6 or 6,12 was used to improve the penetration resistance of ultra high molecular weight polyethylene (UHMWPE) fabric that would be potentially useful in the manufacture of flexible body armor against spike/knife threats. Quasi‐static test results for the spike penetrator showed a 77% and 86% improvement in the puncture resistance of Nylon 6,6 and Nylon 6,12 coated UHMWPE (respectively) over a neat fabric target of equivalent areal densities. Dynamic impact testing demonstrated dramatic improvement in the puncture resistance of nylon‐coated fabrics while only a slight improvement in stab resistance was observed comparing samples with equivalent areal densities. Photography of ruptured areas after quasi‐static testing revealed limited fiber motion or fiber stretching with no evidence of fiber pullout for nylon‐coated fabric samples in contrast to neat fabric. This suggests that there was a significant increase in energy absorption by nylon‐coated fabrics at impact. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40350.  相似文献   

5.
This article reports a facile one‐step methodology to increase fire resistance properties of cotton fabric. The flame‐retardant coating for cotton fabric was synthesized with methyltriethoxysilane and organophosphates (M102B) through an ultrasound irradiation process. The coating structure and surface morphology of uncoated and coated fabrics were investigated by Fourier transform infrared spectroscopy and scanning electron microscope, respectively. The flame‐retardant properties, bending modulus, air permeability and thermal stability were studied by vertical burning test, cantilever method, air permeability test and thermogravimetric analysis (TGA). As a result, the cotton fabric coated with 29.2% (mass increased) of flame‐retardant coating was able to balance the flame retardant property and wearing comfort of the fabrics. The TGA results showed that the residue char of cotton was greatly enhanced after treatment with the coating, which has a high char forming effect on cellulose during testing. Furthermore, flame‐retardant property of coated fabrics did not change significantly after 10 washing cycles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45114.  相似文献   

6.
《Polymer Composites》2017,38(5):884-892
A systematic study was performed to describe the effect of epoxidized soybean oil (ESO) on storage modulus, glass transition temperature (T g) and mechanical properties in epoxy resin composites reinforced by jute fabric. In addition to aromatic diglycidylether of bisphenol‐A (DGEBA) resin, a glycerol (GER)‐and a pentaerythritol (PER)‐based aliphatic resin was applied as base resin, which can be also synthesized from renewable feedstock. Based on strip tensile test results, the usual alkali treatment of jute fabric was avoided. By increasing the ESO‐content in aliphatic composites the T g increases, whereas in case of DGEBA, it decreases. The results indicate that although ESO has a significant softening effect, the jute fiber‐reinforced DGEBA composite can be replaced without significant compromise in mechanical properties by a potentially fully bio‐based composite consisting of 25 mass% ESO‐containing aliphatic PER‐reinforced by jute fibers. POLYM. COMPOS., 38:884–892, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
Preparation of conductive polymer–coated fabrics was carried out by admicellar polymerization. By this method, a thin layer of conductive polymers (polypyrrole, polyaniline, and polythiophene) was formed on cotton and polyester fabrics by a surfactant template. The effects of monomer concentration, oxidant to monomer ratio, and addition of salt on the resistivity of the resulting fabrics were studied. The results showed that the apparent surface and volume resistivity decreased with an increase in monomer concentration in the range 5–15 mM, but was not strongly dependent on the oxidant to monomer ratio over the range of 1 : 1 to 2 : 1. Addition of 0.5M salt was found to reduce the resistivity significantly. The lowest resistivity obtained was with polypyrrole‐coated fabric, with resistivity around 106 ohm. SEM micrographs of the treated fabric surface showed a filmlike polymer coating, confirming that the fabrics were successfully coated by admicellar polymerization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2629–2636, 2004  相似文献   

8.
The sulfated β‐cyclodextrin (sb‐cd) was prepared from β‐cyclodextrin and the sb‐cd was crosslinked with cotton fabric using ethylenediaminetetraacetic acid (EDTA) as crosslinker. After crosslinking, the synthesized ZnO nanoparticles were padded on this fabric surface. Then, the treated fabrics were dyed with neem extract. The synthesized polymer, crosslinked and nanoparticle‐treated cotton fabrics were characterized using fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), particle sized analyzer, and transmission electron microscopy (TEM) studies. The antibacterial test was done against Staphylococcus aureus and Escherichia coli bacterium. The composite coated with neem dyed cotton fabric has exhibited 71% of dye uptake with 2–3 fastness grade and it has 99% of antibacterial efficiency for S. aureus and 97% for E. coli bacterium. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Polyamide/elastane weft‐knitted fabric, as a suitable compression material, was treated with gentamicin sulfate and a natural antimicrobial preparation of the autochthonous essential oil of Picea abies. The antimicrobial bioactivity of the treated fabric in vitro was tested for different groups of bacteria and a fungus (Staphylococcus aureus, Escherichia coli, Klabsiella, and Candida albicans). The results of the experiment showed that the antimicrobial‐treated knitted fabric expressed a wide range of bactericidal, fungicidal, and bacteriostatic activity versus the various groups of microorganisms. The influence of the antimicrobial treatments on the tensile strength and elongation, tear strength and elongation, stiffness, and elasticity of the chosen test material was also examined. These properties of the fabric were changed after the antimicrobial treatments. Both the tensile strength and tear strength increased about 14% after the treatment. The scope of the experiment also included the testing of the compression distribution at the skin/knitted fabric interface on the legs of human test subjects. Pressure generated by the application of the knitted fabric on the leg surface increased in correlation with a decrease in the leg circumference. On the basis of these observations, it was concluded that the knitted fabric could be used as a compression textile before and after the treatment. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4012–4019, 2007  相似文献   

10.
Novel polyimides were synthesized from 1‐[3′,5′‐bis(trifluoromethyl)phenyl] pyromellitic dianhydride (6FPPMDA) by a conventional two‐step process: the preparation of poly(amic acid) followed by solution imidization via refluxing in p‐chlorophenol. The diamines used for polyimide synthesis included bis(3‐aminophenyl)‐3,5‐bis(trifluoromethyl)phenyl phosphine oxide, bis(3‐aminophenyl)‐4‐trifluoromethylphenyl phosphine oxide, and bis(3‐aminophenyl)phenyl phosphine oxide. The synthesized polyimides were designed to have a molecular weight of 20,000 g/mol by off‐stoichiometry and were characterized by Fourier transform infrared, NMR, differential scanning calorimetry, and thermogravimetric analysis. In addition, their intrinsic viscosity, solubility, water absorption, and coefficient of thermal expansion (CTE) were also measured. The adhesion properties of the polyimides were evaluated via a T‐peel test with bare and silane/Cr‐coated Cu foils, and the failure surfaces were investigated with scanning electron microscopy. The 6FPPMDA‐based polyimides exhibited high glass‐transition temperatures (280–299°C), good thermal stability (>530°C in air), low water absorption (1.46–2.16 wt %), and fairly low CTEs (32–40 ppm/°C), in addition to good adhesion properties (83–88 g/mm) with silane/Cr‐coated Cu foils. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1801–1809, 2005  相似文献   

11.
To examine the feasibility of developing flame‐retardant‐textile coated fabric systems with electrospun polyamide/boric acid nanocomposites, fiber webs coated on cotton substrates were developed to impart‐fire retardant properties. The morphology of the polyamide/boric acid nanocomposite fibers was examined with scanning electron microscopy. The flame‐retardant properties of coated fabric systems with different nanoparticle contents were assessed. The flame retardancy of the boric acid coated fabric systems was evaluated quantitatively with a flammability test apparatus fabricated on the basis of Consumer Product Safety Commission 16 Code of Federal Regulations part 1610 standard and also by thermogravimetric analysis. The 0.05 wt % boric acid nanocomposite fiber web coated on pure cotton fabric exhibited an increment in flame‐spreading time of greater than 80%, and this indicated excellent fire protection. Also, the coated fabric systems with 0.05% boric acid nanocomposite fiber webs exhibited a distinct shift in the peak value in the thermal degradation profile and a 75% increase in char formation in the thermooxidative degradation profile, as indicated by the results of thermogravimetric analysis. The results show the feasibility of successfully imparting flame‐retardant properties to cotton fabrics through the electrospinning of the polymer material with boric acid nanoparticles. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
A stochastic modeling approach based on a Monte Carlo method for fluidized bed layering and coating is presented. In this method, the process is described by droplet deposition on the particle surface, droplet drying and the formation of a solid layer due to drying. The model is able to provide information about the coating coverage (fraction of the particle surface covered with coating), the particle‐size distribution, and the layer thickness distribution of single particles. Analytical solutions for simplified test cases are used to validate the model theoretically. The simulation results are compared with experimental data on particle‐size distributions and layer thickness distributions of single particles coated in a lab‐scale fluidized bed. Good agreement between the simulation results and the measured data is observed. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2670–2680, 2016  相似文献   

13.
The vapor‐phase polymerization of pyrrole to form conducting polypyrrole (PPy) films was applied to coat flexible poly(ethylene terephthalate) (PET) fabrics. A PPy‐coated PET fabric surface resistance of 200–20 000 Ω□?1 was obtained. The polymerization conditions, such as the concentration of oxidant and the reaction time and temperature, were systematically investigated. The coated fabric samples exhibited increasing temperatures when subjected to a fixed DC voltage. This result indicates the potential of these PPy‐coated fabric materials for heating applications. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Thin films of environmentally safe, halogen free, anionic sodium phosphate and cationic polysiloxanes were deposited on a Nyco (1:1 nylon/cotton blend) fabric via layer‐by‐layer (LbL) assembly to reduce the inherent flammability of Nyco fabric. In the coating process, we used three different polysiloxane materials containing different amine groups including, 35–45% (trimethylammoniummethylphenythyl)‐methyl siloxane‐55‐65% dimethyl siloxane copolymer chloride salt (QMS‐435), aminoethylaminopropyl silsesquioxane‐methylsilsesquioxane copolymer oligomer (WSA‐7021) and aminopropyl silesquioxane oligomers (WSA‐991), as a positive polyelectrolyte. Thermo‐gravimetric analysis showed that coated fabric has char yield around 40% at 600 °C whereas control fabric was completely consumed. The vertical flame test (VFT) on the LbL‐coated Nyco fabric was passed with after flame time, 2 s, and the char length of 3.81 cm. Volatile and nontoxic degradation products of flame retardant‐coated fabric were analyzed by pyrolysis gas chromatography mass spectroscopy (Py‐GCMS). Surface morphology of coated fabrics and burned fabric residues were studied by scanning electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The current study utilises Monte Carlo simulation and Mie scattering theory to estimate the reflectance spectra of fabric coated with titanium dioxide nanopigments of various diameters and concentrations. Image processing was carried out and experimental data were gathered to evaluate the performance of Monte Carlo simulation. The distribution and location of the nanopigments on the surface of fabric were determined using the Monte Carlo method. Reflection of the fabric was calculated based on Monte Carlo simulation with the partitive mixing method and Mie theory. According to the experimental and simulation results, the reflectance of coated samples was increased by increasing the concentration and number of titanium dioxide nanoparticles. There was a good match between the results obtained by Monte Carlo simulation and the experimental results. For coated samples (dTiO2: 500 nm), the root mean square error between measured and predicted reflectance by the Monte Carlo and partitive mixing method and by Monte Carlo and Mie theory was 0.022 and 0.0078, respectively. The results indicate that the performance of the Monte Carlo and Mie method was better than that of the Monte Carlo and partitive mixing method. According to t-test analysis, there was no statistically significant difference between the experimental data and Monte Carlo simulation.  相似文献   

16.
Different from the conventional method of developing stimuli‐sensitive textiles by graft copolymerization of environmental responsive polymers onto the fabric, the coating technique was applied to bond temperature‐sensitive hydrogels with cotton fabric through chemical covalent in our work. A temperature‐sensitive linear copolymer of Ntert‐butylacrylamide (NTBA) and acrylamide (AAm) was prepared in methanol. Then, the cotton fabrics were coated using an aqueous solution of this copolymer containing 1,2,3,4‐butanetertracarboxylic acid as a crosslinker and sodium hypophosphite (SHP) as a catalyst, followed by drying and curing. The surface of the cotton fabrics was bonded on more or less coatings of poly (NTBA‐co‐AAm) hydrogels, as verified by Fourier transform infrared spectroscopy and scanning electron microscopy images. The poly(NTBA‐co‐AAm) hydrogels‐coated fabrics exhibited temperature sensitive, and the temperature interval of the deswelling transition was higher than lower critical solution temperature of linear copolymer solution. The coated fabrics presented good water‐impermeable ability because of the swelling of hydrogels bonded, especially when the add‐on was as high as 14.14%. Environmental scanning electron microscopy images revealed that coating hydrogels swelled and covered on the surface as a barrier to prevent water from penetrating once the coated fabric came into contact with water. The findings demonstrate that the temperature‐sensitive hydrogels can be covalently bonded on the cotton fabrics by coating technique and the coated fabrics have potential on immersion fabrics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A polyaniline–TiO2 hybrid was coated on cotton fabric to make it electrically conductive. A One‐pot method of synthesis with acetic acid medium was used, in which TiCl4 was used as precursor. The oxidative polymerization of aniline adsorbed on TiO2 (anatase form) was performed in the presence of cotton fabric. Fabric crystallinity was least affected by the coatings, as confirmed by XRD analysis. FTIR studies revealed interactions between fiber and hybrid. The morphological study through SEM showed the uniform coating of hybrid over the fibers of the cotton fabric and AFM analysis revealed the rod‐like structure of the hybrid. The strength of the coated fabrics was assessed using abrasion tests. The electrical conductivity was determined using electrochemical impedance spectroscopy (EIS).The conductivity value varied with respect toTiO2 content and ranged in the order 10?4 to 102S/cm. The effect of atmospheric aging was assessed. A more durable conductivity was observed in hybrid‐coated fabric than pristine polyaniline‐coated fabric. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Biodegradation characteristics of nylon fabric coated with fluorocarbon polymer (oil and water repellent) and thiourea‐formaldehyde (fire retardant) were studied. The fabric was exposed to soil burial, air exposure, and standard culture media for various intervals of time and evaluated for changes in physicomechanical properties, oil and water repellency, air permeability, as well as flame‐retardant properties. Significant falls in these properties were observed, the extent of which was found to be maximum in the case of soil burial followed by air medium and standard culture. Themogravimetric analysis showed enhanced heat stability of the unexposed fabric compared with base nylon. Exposure of the coated fabric to various biomedia caused extensive damage of the fire retardant material and also resulted in a significant reduction in the flame‐resistant properties. Fluorocarbon material, on the other hand, did not degrade on bioexposure and its presence improved the thermal stability of the coated fabric. Fourier transform infrared spectroscopy showed remarkable changes, e.g., peak shifts, intensity variations, as well as elimination of peaks in the case of soil burial compared with the unexposed sample. Scanning electron microscopy was used to investigate the changes in the surface topography associated with the degradation of the coated fabric vis‐à‐vis those of the controlled one. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 685–691, 2000  相似文献   

19.
In this study, a composite of poly (ethylene terephthalate) (PET) fabric and soy protein isolate (SPI) hydrogel loaded with gabapentin was developed. For covalent attachment of SPI on the surface of PET fabric, graft polymerization of acrylic acid (AA) on the surface of PET fabric was performed and then carboxyl groups available in the structure of AA were activated using EDAC and then SPI was coated on the surface of PET fabric. The results revealed appropriate connection between hydrogel and modified fabric. The hydrogel was characterized by swelling test and the drug release behavior was investigated. It was found that the casting temperature affects the swelling ratio of the hydrogel and an appropriate release profile of the drug was observed. The surface of fabric was characterized by contact angle measurement, electron microscopy, and infrared spectroscopy. In vitro cell culture study was performed using NIH 3T3 mouse fibroblasts to investigate the biocompatibility of final composite and MTS results along with morphology of cells on the surface of PET fabric coated with SPI revealed the biocompatibility of final product and no cell cytotoxicity was observed in modified PET fabric.  相似文献   

20.
2‐Amino‐2‐methyl‐1‐propanol (AMP) was coated onto cotton fabric with 1,2,3,4‐butanetetracarboxylic acid (BTCA) as a crosslinking agent to simultaneously impart antimicrobial and durable‐press functionalities. The coatings were characterized and confirmed by attenuated total reflectance–IR and thermogravimetric analysis. The coated fabrics were rendered biocidal upon exposure to dilute household bleach, and the chlorinated swatches exhibited about 6 log reductions of Escherichia coli O157:H7 and Staphylococcus aureus within 5 min of contact time. A concentration of 1.5 wt % AMP was sufficient to produce this biocidal efficacy. Increasing the BTCA content of the coating improved the wrinkle recovery angle. The coatings were very stable toward repeated laundering, and they exhibited sufficient halogen storage stabilities for industrial applications. A photolytic decomposition was observed when the coatings were exposed to UVA light. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号