共查询到20条相似文献,搜索用时 11 毫秒
1.
In this article, the spherulitic morphology and growth rate of the neat and plasticized poly(lactic acid) (PLA) with triphenyl phosphate (TPP) were compared and analyzed by polarizing optical microscopy with hot stage at a temperature range of 100?142°C. The spherulitic morphology of the neat PLA underwent a series of changes such as the typical Maltese Cross at less than 132°C, the disappearance of the Maltese Cross at 133°C, the irregular and distorted spherulites at higher than 134 and 142°C, respectively. For plasticized PLA, the spherulitic morphology exhibited the same changes as neat PLA, but these changes were shifted to lower temperature when compared with neat PLA. In the case of the spherulitic growth, neat PLA had the maximum value of 0.28 μm/s at 132°C, and plasticized PLA had higher values than that of neat PLA. Further analysis based on the Lauritzen–Hoffman theory was presented and results showed that the values of nucleation parameter Kg increased with TPP content. The crystallization behavior of PLA was analyzed by differential scanning calorimetry and wide‐angle X‐ray diffraction. The results showed that the degree of crystallinity of plasticized PLA markedly increased when compared with neat PLA sharply with the incorporation of plasticizer. The crystallization kinetics for the neat and plasticized PLA under isothermal crystallization at 114°C was described by the Avrami equation and the Avrami exponent is close to 2, implying that the crystallization mechanism did not change. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
2.
Crystallization behavior and polymorphism of poly(1,4‐butylene adipate): Effect of anhydrous orotic acid as nucleating agent 下载免费PDF全文
The effect of anhydrous orotic acid (OA), as a biocompatible nucleating agent (NA), on the non‐isothermal and isothermal crystallization behaviors, polymorphic crystalline structure and phase transition of poly(1,4‐butylene adipate) (PBA) was investigated. It is found that the OA increased the crystallization temperature of the PBA in the non‐isothermal crystallization process and decreased the crystallization time of the PBA in the isothermal crystallization process. Meanwhile, the spherulite size decreased and spherulite density increased for the PBA. The OA favored the formation of the PBA α‐form crystal, compared to the neat PBA. In addition, upon incorporation of the OA, the β‐to‐α phase transition rate was enhanced significantly. Mechanisms for the preferential formation of the PBA α‐form crystal and the accelerated phase transition have also been proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42957. 相似文献
3.
The nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers modified with poly(lactic acid) (PLA) were investigated with differential scanning calorimetry, and a crystal morphology of the samples was observed with scanning electron microscopy. Waste PET (P100) obtained from postconsumer water bottles was modified with a low‐molecular‐weight PLA. The PET/PLA weight ratio was 90/10 (P90) or 50/50 (P50) in the modified samples. The nonisothermal melt‐crystallization kinetics of the modified samples were compared with those of P100. The segmented block copolymer structure (PET‐b‐PLA‐b‐PET) of the modified samples formed by a transesterification reaction between the PLA and PET units in solution and the length of the aliphatic and aromatic blocks were found to have a great effect on the nucleation mechanism and overall crystallization rate. On the basis of the results of the crystallization kinetics determined by several models (Ozawa, Avrami, Jeziorny, and Liu–Mo) and morphological observations, the crystallization rate of the samples decreased in the order of P50 > P90 > P100, depending on the amount of PLA in the copolymer structure. However, the apparent crystallization activation energies of the samples decreased in the order of P90 > P100 > P50. It was concluded that the nucleation rate and mechanism were affected significantly by the incorporation of PLA into the copolymer structure and that these also had an effect on the overall crystallization energy barrier. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
4.
Effects of cyanuric acid (CA) on nonisothermal and isothermal crystallization, melting behavior, and spherulitic morphology of bacterial copolyesters of poly(3‐hydroxybutyrate), i.e., poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBH), have been investigated. CA has excellent acceleration effectiveness on the melt crystallization of bacterial PHB, PHBV, and PHBH, better than the nucleating agents reported in the literatures, such as boron nitride, uracil, and orotic acid. PHBV and PHBH do not crystallize upon cooling from the melt at 10°C/min, while they are able to complete crystallization under the same conditions with an addition of 1% CA, with a presence of sharp crystallization exotherm at 75–95°C. Isothermal crystallization kinetics of neat and CA‐containing PHBV and PHBH were analyzed by Avrami model. Crystallization half‐times (t1/2) of PHBV and PHBH decrease dramatically with an addition of CA. The melting behavior of isothermally melt‐crystallized PHBV and PHBH is almost not influenced by CA. Spherulitic numbers of PHBV and PHBH increase and the spherulite sizes reduce with an incorporation of CA. Nucleation densities of PHBV and PHBH increase by 3–4 orders of magnitude with a presence of 1% CA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
5.
Ping Song Zhiyong Wei Jicai Liang Guangyi Chen Wanxi Zhang 《Polymer Engineering and Science》2012,52(5):1058-1068
To accelerate the crystallization of poly(L ‐lactic acid) (PLLA) and enhance its crystallization ability, a multiamide nucleator (TMC) was introduced into the PLLA matrix. The thermal characteristics, isothermal and nonisothermal crystallization behavior of pure PLLA and TMC‐nucleated PLLA were investigated by differential scanning calorimetry. The determination of thermal characteristics shows that the addition of TMC can significantly decrease the onset temperature of cold crystallization and meanwhile elevate the total crystallinity of PLLA. For the isothermal crystallization process, it is found that the overall crystallization rate is much faster in TMC‐nucleated PLLA than in pure PLLA and increases as the TMC content is increased, however, the crystal growth form and crystalline structure are not influenced much despite the presence of TMC. In the case of nonisothermal crystallization, the nucleation efficiency and nucleation activity were estimated and the results indicate that excellent nucleation‐promoting effect could be achieved when the weight percentage of TMC is chosen between 0.25% and 0.5%. Polarized optical microscopy observation reveals that the nuclei number of PLLA increases and the spherulite size reduces greatly with the addition of TMC. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers 相似文献
6.
Both poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) are fully biodegradable polyesters. The disadvantages of poor mechanical properties of PLA limit its wide application. Fully biodegradable polymer blends were prepared by blending PLA with PBAT. Crystallization behavior of neat and blended PLA was investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WAXD). Experiment results indicated that in comparison with neat PLA, the degree of crystallinity of PLA in various blends all markedly was increased, and the crystallization mechanism almost did not change. The equilibrium melting point of PLA initially decreased with the increase of PBAT content and then increased when PBAT content in the blends was 60 wt % compared to neat PLA. In the case of the isothermal crystallization of neat PLA and its blends at the temperature range of 123–142°C, neat PLA and its blends exhibited bell shape curves for the growth rates, and the maximum crystallization rate of neat PLA and its blends all depended on crystallization temperature and their component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
7.
Yaming Wang Dongran He Xiao Wang Wei Cao Qian Li Changyu Shen 《Polymer Bulletin》2013,70(10):2911-2922
The effect of phthalhydrazide compound on the nonisothermal and isothermal crystallization behavior of bio-based and biodegradable poly(lactic acid) (PLA) was investigated by differential scanning calorimetry and polarized optical microscopy. The nonisothermal melt crystallization of PLA started much earlier in the presence of phthalhydrazide even at a phthalhydrazide content as low as 0.1 wt%. The isothermal crystallization kinetics was analyzed by the Avrami model. It was found that the Avrami exponent of the PLA crystallization was not significantly influenced by the addition of phthalhydrazide, indicating that the crystallization mechanism almost did not change in the composites. The crystallization half-time of PLA/phthalhydrazide composites decreased significantly with increase in phthalhydrazide loading. The observation from optical microscopy showed that the presence of phthalhydrazide increased the number of nucleation sites. The above observations indicate that phthalhydrazide is an efficient nucleating agent of PLA. 相似文献
8.
In this article, the spherulitic growth rate of neat and plasticized poly(lactic acid) (PLA) with triphenyl phosphate (TPP) was measured and analyzed in the temperature range of 104–142°C by polarizing optical microscopy. Neat PLA had the maximum value of 0.28 μm/s at 132°C, whereas plasticized PLA had higher value than that of neat PLA, but the temperature corresponding to the maximum value was shifted toward lower one with increasing TPP content. The isothermal crystallization kinetics of neat and plasticized PLA was also analyzed by differential scanning calorimetry and described by the Avrami equation. The results showed for neat PLA and its blends with various TPP contents, the average value of Avrami exponents n were close to around 2.5 at two crystallization temperatures of 113 and 128°C, the crystallization rate constant k was decreased, and the half‐life crystallization time t1/2 was increased with TPP content. For neat PLA and its blend with 15 wt % TPP content, the average value of n was 2.0 and 2.3, respectively, the value of k was decreased, and the value of t1/2 was increased with crystallization temperature (Tc). Further investigation into crystallization activation energy ΔEa of neat PLA and its blend with 15 wt % TPP showed that ΔEa of plasticized PLA was increased compared to neat PLA. It was verified by wide‐angle X‐ray diffraction that neat PLA and its blends containing various TPP contents crystallized isothermally in the temperature range of 113–128°C all form the α‐form crystal. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
9.
Ru Zhang Yaming Wang Kaojin Wang Guoqiang Zheng Qian Li Changyu Shen 《Polymer Bulletin》2013,70(1):195-206
Poly(lactic acid) (PLA) is a well-known biodegradable and biocompatible polyester with intrinsically slow crystallization rate. To extend its applications to the field where heat resistance is required, increasing the crystallization rate of the material becomes critical. In this note, the nucleation effect of supramolecular inclusion complex (IC), organized by non-covalent interactions through threading α-cyclodextrin molecules onto PLA chains, on the crystallization of PLA was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. The formation of IC was confirmed by wide-angle X-ray diffraction and DSC measurements. It was found that the presence of PLA-IC significantly promoted the crystallization of PLA from both the non-isothermal and isothermal crystallization experiments. The nucleation mechanism was also discussed to some extent. 相似文献
10.
Jyh‐Hong Wu M. C. Kuo Chien‐Wen Chen Chen‐Wei Chen Ping‐Hung Kuan Yu‐Jheng Wang Shu‐Yao Jhang 《应用聚合物科学杂志》2013,129(5):3007-3018
The isothermal crystallization behavior of α‐cellulose short‐fiber reinforced poly(lactic acid) composites (PLA/α‐cellulose) was examined using a differential scanning calorimeter and a petrographic microscope. Incorporating a natural micro‐sized cellulose filler increased the spherulite growth rate of the PLA from 3.35 μm/min for neat PLA at 105°C to a maximum of 5.52 μm/min for the 4 wt % PLA/α‐cellulose composite at 105°C. In addition, the inclusion of α‐cellulose significantly increased the crystallinities of the PLA/α‐cellulose composites. The crystallinities for the PLA/α‐cellulose composites that crystallized at 125°C were 48–58%, higher than that of the neat PLA for ~13.5–37.2%. The Avrami exponent n values for the neat and PLA/α‐cellulose composites ranged from 2.50 to 2.81 and from 2.45 to 3.44, respectively, and the crystallization rates K of the PLA/α‐cellulose composites were higher than those of the neat PLA. The activation energies of crystallization for the PLA/α‐cellulose composites were higher than that of the neat PLA. The inclusion of α‐cellulose imparted more nucleating sites to the PLA polymer. Therefore, it was necessary to release additional energy and initiate molecular deposition. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
11.
N,N′‐Bis(benzoyl) suberic acid dihydrazide (NA) as nucleating agent for poly(L ‐lactic acid) (PLLA) was synthesized from benzoyl hydrazine and suberoyl chloride, which was deprived from suberic acid via acylation. PLLA/NA samples were prepared by melt blending and a hot‐press forming process. The nonisothermal and isothermal crystallization, spherulite morphology, and melting behavior of PLLA/NA with different contents of NA were investigated with differential scanning calorimetry, depolarized‐light intensity measurement, scanning electron microscopy, polarized optical microscopy, and wide‐angle X‐ray diffraction. With the incorporation of NA, the crystallization peak became sharper and shifted to a higher temperature as the degree of supercooling decreased at a cooling rate of 1°C/min from the melt. Nonisothermal crystallization indicated that the presence of NA accelerated the overall PLLA crystallization. In isothermal crystallization from the melt, the presence of NA affected the isothermal crystalline behaviors of PLLA remarkably. The addition of NA led to a shorter crystallization time and a faster overall crystallization rate; this meant that there was a heterogeneous nucleation effect of NA on the crystallization of PLLA. With the addition of 0.8% NA, the crystallization half‐time of PLLA/NA decreased from 26.5 to 1.4 min at 115°C. The Avrami theory was used to describe the kinetics of isothermal crystallization of the PLLA/NA samples. Also, with the presence of NA, the spherulite number of PLLA increased, and the spherulite size decreased significantly. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
12.
The thermal behavior and spherulitic morphologies of poly(L ‐lactic acid) (PLLA)/poly(D ‐lactic acid) (PDLA) 1/1 blend with weight‐molecular‐weight of 105 order, together with those of pure PLLA and PDLA, were investigated using differential scanning calorimetry and polarized optical microscopy. It was found that in the blend, stereocomplex crystallites could be formed exclusively or coexisted with homocrystallites depending on thermal history. Banded to nonbanded spherulitic morphological transition occurred for melt‐crystallized PLLA and PDLA, while the blend presented exclusively nonbanded spherulitic morphologies in the temperature range investigated. The spherulite growth of the blend occurred within a wider temperature range (≤180°C) compared with that of homopolymers (≤150°C), while the spherulite growth rates were comparable for both the blend and homopolymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
13.
针对聚乳酸(PLLA)亲水性差、降解周期长的问题,利用与亲水性高分子聚乙二醇(PEG)共混的方法对其进行改性。采用转矩流变仪制备了不同组成的PLLA/PEG共混物颗粒,系统研究了PLLA/PEG共混物的结晶和熔融、亲水性和在酸碱介质中的降解行为。结果表明,PEG的加入增强了共混物中PLLA的结晶能力,提高了PLLA在降温过程中的熔融结晶温度。PLLA/PEG共混物在等温结晶中表现出比纯PLLA更快的结晶速度。通过改变PLLA/PEG共混物的组成,可调控材料的表面亲水性和降解速率。随着PEG含量的增多,PLLA/PEG共混物的表面接触角降低。PLLA与PLLA/PEG共混物均可在水溶液中降解,共混物的降解速率高于纯PLLA,随着PEG含量的升高和降解液中酸碱浓度的提高,PLLA/PEG共混物的降解速率加快。 相似文献
14.
Crystallization behavior and morphology of polylactic acid (PLA) with aromatic sulfonate derivative 下载免费PDF全文
This article provides a detailed investigation of crystallization behavior and morphology of polylactic acid (PLA) in the presence of a nucleating agent: potassium salt of 5‐dimethyl sulfoisothalate, an aromatic sulfonate derivative (Lak‐301). Isothermal crystallization kinetics of PLA melt mixed with Lak at concentrations of 0.25–1 wt % was investigated at a range of crystallization temperature, 140–150 °C. To gain further insight on the effect of Lak, nonisothermal differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), polarized optical microscope (POM), heat deflection temperature (HDT), and rheology were also performed. At 0.25 wt % Lak, crystallinity of PLA increased from 10% to 45%, and in 1 wt % Lak, maximum crystallinity of 50% was achieved. With 1 wt % Lak, crystallization half time reduced to 1.8 min from 61 min for neat PLA at 140 °C. The isothermal crystallization kinetics was analyzed using Avrami model. Values of the Avrami exponent for PLA with Lak were mainly in the range of 3 indicating a three dimensional crystal growth is favored. Crystallization rate was found to increase with increase in Lak content. Observation from POM confirmed that the presence of Lak in the PLA matrix significantly increased the nucleation density. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43673. 相似文献
15.
Tianxi Liu Zhishen Mo Shanger Wang Hongfang Zhang Junzuo Wang Hui Na Zhongwen Wu 《应用聚合物科学杂志》1997,64(8):1451-1461
Isothermal melt and cold crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl were investigated by differential scanning calorimetry in two temperature regions. Avrami analysis is used to describe the primary stages of the melt and cold crystallization, with exponent n = 2 and n = 4, respectively. The activation energies are − 118 kJ/mol and 510 kJ/mol for crystallization from the melt and the glassy states, respectively. The equilibrium melting point T0m is estimated to be 309°C by using the Hoffman-Weeks approach, which compares favorably with determination from the Thomson-Gibbs method. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are σ = 8.45 erg/cm2 and σe = 45.17 erg/cm2, respectively. The work of chain folding q is determined as 3.06 kcal/mol. These observed crystallization characteristics of PEDEKmK are compared with those of the other members of poly(aryl ether ketone) family. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1451–1461, 1997 相似文献
16.
In this study, we modified montmorillonite (MMT) with dilauryl dimethyl ammonium bromide (DDAB) and then exfoliated the structures in a poly(L ‐lactic acid) (PLLA) matrix. We used polar optical microscopy and X‐ray diffraction (XRD) to examine the morphologies of the resulting composites, differential scanning calorimetry to study the melting and crystallization behavior, and Fourier transform infrared (FTIR) and Raman spectroscopy to measure the influence of the intermolecular interactions between PLLA and MMT on the isothermal crystallization temperature. We found that the DDAB‐modified MMT was distributed uniformly in the PLLA matrix. At temperatures ranging from 130 to 140°C, the crystalline morphology resembled smaller Maltese cross‐patterned crystallites; at temperatures from 150 to 170°C, however, the number of crystallites decreased, their sizes increased, and they possessed ringed spherulite structures. In the XRD spectra, the intensity of the diffraction peaks of the 200/110 and 203 facets of the PLLA/MMT nanocomposites decreased as the crystallization temperature increased. In the FTIR spectra, the absorption peak of the C?O groups split into two signals at 1748 and 1755 cm?1 when the isothermal crystallization temperature was higher than 140°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
17.
Zhiyuan Jia Kunyu Zhang Juanjuan Tan Changyu Han Lisong Dong Yuming Yang 《应用聚合物科学杂志》2009,111(3):1530-1539
Enhancing the stability of plasticized poly(L ‐lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under γ‐ray (Co60) in the presence of triallyl isocyanurate (TAIC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TAIC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking. Elongation at break of the crosslinked plasticized PLLA decreased with the increase of crosslinking density but remained a high value over 200%. SEM images of fracture surfaces confirmed that the ductile fracture behavior of plasticized PLLA was kept after suitable crosslinking. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
18.
Crystalline dicarboxylated poly(L ‐lactic acid)s (dcPLLAs) with number‐average molecular weights (Mn's) of 103 to 104 g/mol were synthesized via the melt polycondensation of L ‐lactic acid (LLA) in the presence of succinic anhydride (SAD), with tin(II) chloride and toluene‐4‐sulfonic acid as binary catalysts. They were characterized by end‐group titration, 1H‐NMR, differential scanning calorimetry, and wide‐angle X‐ray diffraction. The terminal COOH percentage reached over 98%, and the molecular weight could be controlled by the molar ratio of LLA to SAD. The thermal behaviors depended on the molecular weight. The poly(L ‐lactic acid)s (PLLAs) crystallized slowly for Mn ≤ 2000 but quickly for Mn ≥ 4000. The crystallinity increased from 27 to 40% when Mn grew from 4000 to 10,000. With comparison to ordinary PLLA, the dcPLLA had the same crystallization structure but a slightly lower crystallizability. The glass‐transition temperature was clearly higher than that of amorphous dcPLLAs. With a controllable molecular weight, high COOH percentage, and crystallinity, the dcPLLA with Mn ≥ 4000 appeared to be a suitable prepolymer for the preparation of high‐molecular‐weight crystalline PLLA via chain extension. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
19.
Crystallization kinetics,morphology, and hydrolytic degradation of novel bio‐based poly(lactic acid)/crystalline silk nano‐discs nanobiocomposites 下载免费PDF全文
In this work, novel biodegradable crystalline silk nano‐discs (CSNs) having a disc‐like morphology have been utilized for fabrication of poly(lactic acid) (PLA) nanocomposites by melt‐extrusion. The main focus is to investigate the effect of CSN on isothermal melt crystallization kinetics, spherulitic growth rates, morphology, and hydrolytic degradation of PLA. Spherulitic morphology and growth rates are examined over a wide range of crystallization temperatures (90–120 °C). With incorporation of CSN, the isothermal crystallization kinetics of PLA/CSN increases, however, the crystallization mechanism remains unaltered. The apparent activation energy and surface energy barrier for crystallization process decreases upon addition of CSNs. At lower isothermal crystallization temperatures (Tc) viz. (90–100 °C), reduced growth rates of PLA spherulites is observed. Both PLA and PLA/CSN exhibit highest crystallization rates at around ~107 °C. The hydrolytic degradation rates calculated from molecular weight reduction shows that PLA/CSN nanocomposites' degradation rates are lower as compared to PLA in acidic, neutral, and alkaline media at pH = 2, 7, and 12, respectively, due to hydrophobic nature of CSN. Scanning electron microscopy study demonstrated the surface erosion mechanism of hydrolytic degradation of PLA and PLA/CSN nanocomposites. This work provides valuable insight for the application and reclamation of PLA/CSN bionanocomposites in moist and wet working environments. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46590. 相似文献
20.
Crystallization behavior and water vapor permeability of poly(lactic acid) nanocomposite under oscillatory shear 下载免费PDF全文
The crystallization behavior and water vapor permeability of a poly(lactic acid) (PLA) nanocomposite containing 5 wt % organic montmorillonite (OMMT) under oscillatory shear were investigated. Under the oscillatory shear, OMMT platelets exhibited a better intercalated structure and oriented along the flow direction, some of the OMMT platelets are exfoliated and dispersed in the form of single or few‐layer platelets. These well‐dispersed OMMT platelets acted as more effective nucleating and accelerating agent for the crystallization of PLA, as a result, the cold crystallization enthalpy was significantly decreased, the cold crystallization temperature was much closer to the melting temperature and the crystallinity is dramatically increased, which are observed for the first time. Moreover, the water vapor permeability is decreased by 36% due to the barrier effect of the well‐dispersed OMMT and the increased crystallinity of PLA, which increase the tortuous path that water molecules required to permeate. The mechanical properties are also enhanced owing to the well‐dispersed OMMT and increased crystallinity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42321. 相似文献