首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, influence of membrane preparation parameters on structural morphology and performance of polyethersulfone/polydimethylsiloxane (PES/PDMS) composite membrane was investigated for gas separation. Asymmetric PES flat sheet membranes were composed by phase inversion method and used as supports. PES composite membranes were fabricated by coating silicone rubber as selective layer on the top surface of support. Effects of different concentrations of PES and PDMS, solvent type, and support thickness on membrane performance were investigated for separation of oxygen from nitrogen. The optimized superior membrane was further modified using polyvinylidenfluoride, methanol and ethanol as additives in PES solutions and/or in water coagulation bath to promote the membrane capability. The results showed that addition of ethanol and methanol in cast solution and coagulation bath can greatly affect the morphology and hence the performance of the prepared membranes. The permeance changes have the contrary trend with solubility parameter difference between solvent and nonsolvent mixture, for instance when this parameter difference was lowest, higher permeance was obtained. Support and coating polymer concentration can control the permeance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
We made poly(ether‐block‐amide) membranes by casting a solution on a nonsolvent surface. The effects of the solvent ratio (n‐butanol/isopropyl alcohol), temperature, and polymer concentration on the quality of the membranes were studied. The results show that the film quality was enhanced with increasing isopropyl alcohol ratio in the solvent. This behavior was related to the reduction of the solution surface tension and the interfacial tension between the solution and nonsolvent. Uniform films were made at a temperature range of 70–80°C and a polymer concentration of 4–7 wt %. The morphology of the membranes was investigated with scanning electron microscopy. The qualities of the films improved with increasing isopropyl alcohol ratio in the solvent. With these membranes, the pervaporation of ethyl butyrate (ETB)/water and isopropyl alcohol/water mixtures was studied, and high separation performance was achieved. For ETB/water mixtures, with increasing ETB content, both the permeation flux and separation factor increased. However, for isopropyl alcohol/water mixtures, with increasing isopropyl alcohol content, the permeation flux increased, but the separation factor was diminished. Increasing temperature in a limited range resulted in a decreasing separation factor and an increasing permeation flux. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
In this study, a commercial polyimide is examined in the capacity of membrane oxygenator. The effects of polymer concentration, cosolvent, and nonsolvent additives in dope solution on the performance and morphology of membranes are investigated. In order to improve the performance, surface modification is carried out by using plasma-enhanced chemical vapor deposition. The obtained results reveal that CO2 permeance decreased from 495 to 78 GPU upon increasing Matrimid concentration at constant tetrahydrofuran (THF) and ethanol (EtOH) concentrations. It was also found that increasing nonsolvent concentration as well as decreasing cosolvent concentration in dope led to increase in membrane gas permeance. According to morphological characterizations, increase in polymer concentration resulted in transformation of membranes from porous into spongy like microstructure with formation of a denser skin layer. In addition, membrane porosity and mean pore size reduced by increasing THF and decreasing EtOH concentrations. On the other hand, plasma treatment successfully introduced fluorine groups onto the membrane surface which promoted biocompatibility of the membranes. Energy-dispersive X-ray spectroscopy results revealed that fluorination of membrane surface was attained up to 23% and contact angle of membrane enhanced up to 120°. Membrane permeance was also increased slightly upon modification. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48824.  相似文献   

4.
PVDF, poly(vinylidene fluoride), membranes were prepared and investigated by a scanning electron microscope, a universal testing machine, and capillary porometer for its potential use as a separator in lithium ion batteries. The membranes were prepared by phase inversion with different polymer types, concentrations of solution, amounts of additive, and nonsolvent ratios of water/ethanol. The morphology of membranes is affected by the ratio of both the coagulation bath (water/ethanol) and a low molecular weight additive (polymer/solvent/additive). The results showed that significant variations in the membrane were detected when adding an additive to the casting solution or ethanol to the coagulation bath. With an increased concentration of ethanol, the upper structure was found to be transformed into a sponge‐like arrangement. In the case of Solef®1015 of the same polymer concentration, despite the higher molecular weight of 1015, a relatively small sized nucleus is formed, resulting in a denser network and relatively uniform membrane structure being formed. Mechanical testing showed that the tensile strength of the PVDF membranes increased when added to a 25 wt % ethanol coagulation bath, whereas it is decreased when added to higher concentrations of ethanol in the bath or additives in the casting solution. In a bath condition of water/ethanol = 75/25 wt % (Bath no. 2), the value of tensile strength is 7.11 and 7.52 MPa, for Solef®6010 20 wt % and Solef®1015 17 wt %, respectively. The thickness of the prepared membrane is 21–34 μm and the porosity is up to 50%. The electrolyte absorption changes of the fabricated membranes at different conditions are measured from 151 to 223 ± 15%. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
We report a novel porous fluorinated polyimide membrane with a cylinder structure fabricated by a wet phase inversion process, which is formed by a ternary system, polyimide/solvent/water. The porous polyimide membranes consisted of a thin top porous layer and three‐dimensionally ordered cylinder micropores. The porous membrane‐forming solvents were N‐methylpyrrolidone containing nonsolvent additives such as alcohol, and the height and width of the cylinder structure were controlled by the solvents. Water fluxes through the porous polyimide membranes were measured using a stirred dead‐end filtration cell, and the fluxes of the porous membrane with the cylinder‐type structure were approximately three times greater than those of the membrane with the finger‐type structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3016–3021, 2004  相似文献   

6.
The polyvinylidene fluoride (PVDF)/polyvinyl alcohol (PVA) polymer solutions were coated on the outer surface of PVDF matrix hollow fiber membrane. On the principle of the homogeneous‐reinforced (HR) membrane technology, the reinforced PVDF/PVA (RFA) hollow fiber membranes prepared through the dry‐wet spinning method. The performance of the RFA membranes varies with the PVA concentration in the polymer solution and is characterized in terms of pure water flux (PWF), porosity, a mechanical strength test, and morphology observations by a scanning electron microscopy (SEM). The results of this study indicate that PVA can apparently improve the hydrophilicity of the PVDF hollow fiber membranes. The growing enrichment of the hydrophilic components PVA on the membrane surface is determined by X‐ray photoelectron spectroscopy. The RFA membranes have a favorable interfacial bonding between the coating layer (PVDF/PVA) and the matrix membrane (PVDF hollow fiber membrane), as shown by SEM. The elongation at break of the RFA membranes increases much more than that of the matrix membrane that is endowed with the better flexibility of the membrane performance. PWF decreases much more compared with that of the matrix membrane. The RFA membranes have a lower flux decline degree during the process of protein solution and ink solution filtration compared with that of the matrix membrane. POLYM. ENG. SCI., 54:276–287, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
8.
Phase inversion is a very flexible technique to obtain membranes with a large sort of morphologies. Membrane properties can vary greatly depending on the kind of polymer system used. Bisphenol A polycarbonate (PC) could be used as a phase inversion membrane base polymer, and presents very good properties. Nevertheless, very little information on membrane preparation using PC and the phase inversion process can be found in the literature. In this work flat‐sheet microporous membranes were obtained by the phase inversion process using the immersion precipitation technique. A new polymer system was studied, consisting of polycarbonate, N‐methyl‐2‐pyrrolidone as solvent, water as the nonsolvent, and an additive. The influence of some parameters on membrane morphology, such as polymer solution composition, exposition time before immersion into the precipitation bath, and the kind of additive was investigated. Precipitation was followed using light transmission experiments and membrane morphology was observed through Scanning Electron Microscopy (SEM). The viscosity and cloud points of all polymer solutions were also determined. The results were related to the studied synthesis parameters, using the basic principles of membrane formation by the phase inversion technique, looking forward to establishing criteria to control the morphology of flat‐sheet membranes using polycarbonate as the base polymer. The results showed that both additives were able to increase pore interconnectivity and even suppress macrovoid formation. The decrease in the miscibility region of the polymer system and increase in mass transfer resistance are found to be the determining factors during polymer solution precipitation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3085–3096, 2002  相似文献   

9.
Sulfonated polysulfone (SPSF) flat ultrafiltration membranes were successfully prepared by immersion precipitation phase inversion method. N‐Methyl pyrrolidone was used as a solvent, and polyvinylpyrrolidone (PVP) was used as a polymeric additive in the casting solution. The effects of casting solution formulation and preparation conditions on membrane structure and properties were investigated in present study, and the morphology of the membranes was analyzed by scanning electron microscopy. The results indicated that the performances of SPSF membranes made by chemical modification were better than polysulfone membrane. The SPSF concentration played a vital role in restricting the pure water flux (PWF), promoting the rejection coefficient, and improving the hydrophilicity. A maximum PWF and minimum egg albumin rejection coefficient were obtained when the PVP content was 10%. When the coagulation bath temperature was set to 25°C, the PWF reached 480 L·m?2·h?1 and the ovalbumin rejection coefficient reached 92%. Longer evaporation times improved the PWF. Specifically, when the evaporation time was 70 s, the comprehensive performance was good. POLYM. ENG. SCI., 55:1003–1011, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
Poly(methyl methacrylate) membranes have been prepared using a supercritical fluid‐phase inversion process in which CO2 acts as the nonsolvent. Series of experiments were performed at various polymer concentrations, temperatures, and pressures using three different solvents, dimethylsulfoxide, acetone, and tetrahydrofuran. We operated at polymer concentrations ranging between 25 and 1% (w/w) in DMSO, acetone, and THF, obtaining membranes that change with continuity from cellular structure to a structure formed by networked microparticles. The membrane formation parameters in the case of DMSO and acetone have also been varied between 15 and 25 MPa and between 35 and 65°C. We observed that on increasing the pressure and decreasing the temperature, the cell size decreased. The influence of the solvent used on membrane formation has also been analyzed. On increasing the mutual affinity between solvent and nonsolvent, cell and pore sizes decrease and the structure changes from nearly closed to open interconnected cells. POLYM. ENG. SCI. 46:188–197, 2006. © 2005 Society of Plastics Engineers  相似文献   

11.
《分离科学与技术》2012,47(16):3876-3887
Abstract

In this work, polyethersulfone (PES) asymmetric nanofiltration (NF) membranes were prepared by immersion precipitation phase inversion process. The casting solution contained N-methyl-2-pyrrolidone (NMP) as solvent, 1-propanol and 2-propanol as nonsolvent additives, and polyvinylpyrrolidone (PVP) as pore former additive. Water was used as a coagulant. The effects of the PVP content in the casting solution and the exposed time on the performances of the NF membranes were investigated. It was found that with the increase of PVP content, the pure water flux (PWF) increased to the largest value and then decreased. The rejection to PEG 1000 always decreased. The largest value (1281.40 kg · m?2 · h?1 · MPa?1) of PWF appeared when the content of 1-propanol was 9 wt.%. However, when 2-propanol was added in the casting solution, the largest value of PWF was only 678.37 kg · m?2 · h?1 · MPa?1 (the content of 2-propanol was 7 wt.% and other preparing conditions were unchanged). The results meant that both PWF and rejection of the membranes with 1-propanol as additive were higher than that of 2-propanol as additive. The possible reason was discussed from the viewpoint of the difference of solubility of propanols to PES and PVP.  相似文献   

12.
Preparation of pure polysulfone (PSf) membrane for CO2/CH4 separation was aimed in this study. Accordingly, the effects of different variables such as: type and concentration of alcohol as external nonsolvent in the coagulation bath, solvent type in the casting solution and also presence of butanol (BuOH) as internal nonsolvent in polymer solution were examined. CO2 and CH4 permeabilities of prepared membranes in different coagulation baths follow this order: ethanol‐50% (EtOH‐50%) > isopropyl alcohol‐50% (IPA‐50%) > ethanol‐100% (EtOH‐100%) > IPA‐100%. According to scanning electron microscopy photographs, membrane asymmetry decreased in higher concentration of alcohols and a high symmetric membrane was prepared using IPA‐100% as external nonsolvent. CO2/CH4 selectivity improved in the following order: IPA‐100% > EtOH‐100% > IPA‐50% > EtOH‐50%. Then, a high CO2/CH4 selectivity (36.40) was obtained employing pure IPA in coagulation bath. When a mixture of NMP/THF was used instead of NMP as solvent, CO2/CH4 selectivity increased from 7.10 to 18.50. Thickness of membranes decreased from 124.70 to 72.11 μm by addition of BuOH concentration from 0 to 10 wt% as internal nonsolvent. Consequently, an enhancement in gas permeability was observed in higher BuOH concentrations. POLYM. ENG. SCI., 54:1686–1694, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
Nanofiltration PA6/EVOH membranes were prepared through a nonsolvent induced phase separation technique. The effects of polymer concentration in the solution and solvent evaporation time on the performance and morphology of the resulting membranes were investigated by cloud point titration, permeation, and scanning electron microscopy (SEM). Experimental cloud point data for various prepared membranes suggested that polymer solutions with higher concentrations of PA6/EVOH need a less content of nonsolvent. SEM observations show that an increase in polymer concentration leads to formation of a thin dense layer on the surface of the membrane thanks to pore size reduction. However, dense top layer of membrane becomes thicker as polymer concentration increases from 15 wt% to 20 wt%. The performance of membranes reveals a decrease with polymer concentration in casting solution. By contrast, Polyamide/Poly(ethylene‐co‐vinyl alcohol) membranes show an optimal performance with various formic acid evaporation times. J. VINYL ADDIT. TECHNOL., 25:E28–E34, 2019. © 2018 Society of Plastics Engineers  相似文献   

14.
Different nonsolvent additives, namely, diethylene glycol, n-butyl alcohol (NBA), and ethylene glycol monomethyl ether, were added into the casting solution (polyethersulfone/dimethylformamide/lithium chloride) to prepare ultrafiltration (UF) membrane via phase inversion. The effects of different additives and their concentration on the pore structure of the prepared UF membrane were studied. The cross-sectional morphology of the membrane was observed via scanning electron microscopy. The addition of nonsolvent additives improved the large-cavity structure of the membrane. When the additive was low-content NBA (1–3 wt %), the membrane pore structure transformed from large-cavity structure to fully sponge-like structure. When the content of additive NBA was 3 wt %, the flux of the prepared UF membrane was 130.45 L (m−2 h−1), the rejection of PEG20000 was 95.54% and the flux remained high at 4 bar in long-term stability test. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47525.  相似文献   

15.
The phase‐inversion process was used to prepare integrally skinned asymmetric polysulfone (PSf) membranes with different pore sizes. Membranes were prepared from a casting solution of PSf; N‐methyl‐2‐pyrrolidone (NMP) as solvent; and 1,4‐dioxane, diethylene glycol dimethyl ether (DGDE), acetone, and γ‐butyrolactone (GBL) as additives by immersing them in water as a coagulant. The effect of the additives on membrane performance and structure was investigated. The low miscibility of 1,4‐dioxane, DGDE, and acetone with the coagulant resulted in reduced membrane pore size. However, by using GBL as additive pore size of the membrane was slightly increased because of its higher miscibility with the coagulant than NMP. Changing the amount of additives in the casting solution could control the molecular‐weight cutoff values of asymmetric membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2562–2566, 2003  相似文献   

16.
Based on the hydrophilicity and biodegradability of cellulose acetate (CA), polyvinyl chloride (PVC)/CA blend membrane was prepared by solution comixing and phase transformation method. Then the CA in the blend membrane was partially hydrolyzed under acidic conditions to improve the hydrophilicity of the blend membrane, so as to improve the filtration performance of the PVC/CA blend membrane. The properties of the membranes were systematically characterized by Fourier transform infrared spectroscopy, differential scanning calorimeter, and scanning electron microscopy (SEM). The porosity, water contact angle, pure water flux (PWF), protein retention rate, and mechanical properties of the membrane were measured, and the effect of hydrolysis on the filtration performance of the blend membrane was analyzed. The results showed that the hydrophilicity and porosity of the blend membrane increased, the PWF and protein rejection rate enhanced after acid catalyzed hydrolysis, while the mechanical properties of PVC membrane were maintained. This simple preparation method endows PVC/CA blend membrane with desirable filtration performance, and also helps to overcome the disadvantages of poor hydrophilicity and easy pollution of pure PVC membrane.  相似文献   

17.
Membranes based on cellulose acetate for reverse osmosis can possibly be applied to the so‐called salinity process of energy generation and water desalinization. The requirements for membranes for these two different applications are a relatively high water flux and low salt permeability. In this article, we present the optimization of the composition of such membranes. We started by producing membranes with a patented casting solution with the following composition: 45.77 wt % dioxane, 17.61 wt % acetone, and 8.45 wt % acetic acid (solvents); 14.09 wt % methanol (nonsolvent); and 7.04 wt % cellulose diacetate and 7.04 wt % cellulose triacetate. The membranes produced with this solution were analyzed comparatively, with the membranes obtained by the introduction of modifications to the following parameters: the solvent mix, the nonsolvent mix, the proportion of cellulose diacetate and cellulose triacetate in the casting solution, and the addition of reinforcing cellulose fibers. The results led us to conclude that the best membrane formulation had the following composition: 45.77 wt % dioxane, 17.61 wt % acetone, and 8.45 wt % acetic acid (solvents); 4.22 wt % cellulose triacetate and 9.86 wt % cellulose diacetate (polymers); 14.09 wt % methanol (nonsolvent); and 0.5 wt % cellulose fibers (with respect to the total polymer content). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4052–4058, 2006  相似文献   

18.
A novel polyvinylidene fluoride (PVDF) nanocomposite membrane containing graphene oxide nanoribbones (GONRs) as a new nanofiller and polyvinylpyrrolidone (PVP) as pore former agent was prepared via phase inversion method. GONRs were prepared by oxidative unzipping of multi-walled carbon nanotubes (MWCNTs) via chemical approach. Chemical vapor deposition method was used to synthesis MWCNTs. The effects of adding GONRs and PVP into the casting solution on morphology, hydrophilicity and pure water flux (PWF) of the prepared nanocomposite membranes were explored. Antifouling experiments were also performed. It was found that compared to the neat PVDF membrane, PWF of the PVDF/PVP, PVDF/(0.5GONRs) and PVDF/(0.5GONRs)/PVP membranes were improved 80%, 44.9%, and 241.6%, respectively. The obtained results showed that GONRs and PVP exhibit synergistic effects in controlling the membrane properties. This work shows that GONRs can be suitable as nanofiller for preparation of high performance PVDF ultrafiltration membranes with improved antifouling properties.  相似文献   

19.
Defect‐free skinned asymmetric gas separation membranes were prepared by a dual bath coagulation method using a wet phase inversion technique. The membranes were cast from polysulfone solution in different solvents such as: dimethyl‐formamid, 1‐methyl‐2‐pyrrolidone, NN‐dimethyl‐acetamide (DMAC), and tetrahydrofuran. The mixtures of water/iso‐propanol (IPA), water/propanol, water/ethanol (EtOH), and water/methanol (MeOH) with volume ratio of 80/20 were used as the first coagulation bath. This led to the formation of a dense skin top layer. Distillated water was used as the second coagulation bath. The influences of several experimental variables, such as thickness of the membrane, polymer concentration, type of solvent and nonsolvent, immersion time in IPA 20%, and second coagulation bath temperature on skin layer and sublayer were elucidated. For preparing membrane with higher permeance, the influence of internal nonsolvents and addition of polyvinylpyrrolidone (PVP) as additive were investigated. The membrane performance was tested in terms of gas permeance and selectivity for O2/N2 separation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Novel membranes were fabricated with woven Kevlar fabric sandwiched between two isotactic polypropylene layers and with various concentrations of adipic acid as the nucleating agent (NA). A thermally induced phase‐separation dip‐coating method was adopted to generate and control the microporosity in the developed membranes. Scanning electron microscopy and atomic force microscopy were used to directly observe and confirm the morphologies and micropores in the fabricated membranes. We observed that with an increase in the concentration of the NA in the fabricated membranes, both the pore density and pore size decreased. The average pore sizes were observed to be 1.686, 0.925, 0.372 μm, respectively, for 0.3, 0.5, and 0.7 pphr concentrations of the NA, respectively. The flux characteristics of the prepared membranes were also tested at various pressures with water, methanol, ethanol, and isopropyl alcohol as solvents in a custom‐made filtration cell. The results obtained indicate the dependence of the flux on the type of solvent, pressure, and membrane. The flux for the solvents was observed to decrease with increasing concentrations of NA in the prepared membranes and was attributed to the decrease in the pore density and pore size. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2821–2831, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号