首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrocellulose (NC) alcogels were formed in NC/acetone/ethanol ternary system and NC aerogels were prepared from NC alcogels after drying under supercritical CO2 (scCO2). NC alcogel with lower modulus was formed in the ternary system with a higher ethanol ratio. The densities and porosities of NC aerogels were related directly to the initial ethanol content. The NC aerogels clearly retained the crystalline structure of NC powder. NC aerogels that were formed in the system with higher ethanol content had larger pore size distribution range, larger average pore diameter, and larger mesopore and macropore volume. The thermal decomposition of NC aerogel was more accelerated and more acute compared with NC powders.  相似文献   

2.
ABSTRACT

Resorcinol-formaldehyde (RF) aerogels were synthesized by sol-gel polycondensation of resorcinol with formaldehyde in a slightly basic aqueous solution and supercritical drying with carbon dioxide. The control of mesoporous structure of the aerogels was studied by changing the amounts of resorcinol, formaldehyde, distilled water, and sodium carbonate (basic catalyst) used in the polycondensation. As a result of characterization by nitrogen adsorption, the mesopore radius of the RF aerogel was controlled in the range of 2.5 – 9.2 nm. After the hydrogels were immersed in excess of t-butanol, RF cryogels were prepared by freeze drying. The cryogels prepared were mesoporous materials with high surface areas > 500 m2/g and large mesopore volumes > 0.8 cm3/g. Although the surface areas and mesopore volumes of RF cryogels were smaller than those of RF aerogels, the cryogels were useful precursors of mesoporous carbons.  相似文献   

3.
Preparation of mesoporous carbon by freeze drying   总被引:1,自引:0,他引:1  
Resorcinol–formaldehyde (RF) cryogels were synthesized by sol-gel polycondensation of resorcinol with formaldehyde and freeze drying with t-butanol. The cryogels were characterized by nitrogen adsorption and density measurements. Their porous properties were compared with those of RF aerogels prepared by supercritical drying with carbon dioxide. RF cryogels were mesoporous materials with large mesopore volumes >0.58 cm3/g. Although surface areas and mesopore volumes of the cryogels were smaller than those of the aerogels, the cryogels were useful precursors of mesoporous carbons. Carbon cryogels were obtained by pyrolyzing RF cryogels in an inert atmosphere. Carbon cryogels were mesoporous materials with high surface areas >800 m2/g and large mesopore volumes >0.55 cm3/g. When pyrolyzed, micropores are formed inside the cryogels more easily than inside the aerogels.  相似文献   

4.
RF hydrogels were synthesized by the sol-gel polycondensation of resorcinol with formaldehyde and RF cryogels were prepared by freeze drying of the hydrogels with t-butanol. The cryogels were characterized by nitrogen adsorption, density measurements, and scanning electron microscope. Their porous properties were compared with those of the aerogels prepared by supercritical drying with carbon dioxide. RF cryogels were mesoporous materials with large mesopore volumes >5.8× 10?4m3/kg. Although surface areas and mesopore volumes of the cryogels were smaller than those of the aerogels, the cryogels were useful precursors of mesoporous carbons. Aerogel-like carbons (carbon cryogels) were obtained by pyrolyzing RF cryogels in an inert atmosphere. The carbon cryogels were mesoporous materials with high surface areas >8.0× 105m2/kg and large mesopore volumes >5.5× 10?4m3/kg. When pyrolyzed, micropores were formed inside the cryogels more easily than inside the aerogels.  相似文献   

5.
Organic aerogels and related carbon aerogels were prepared from the NaOH‐catalyzed polycondensation of resorcinol–furfural (RF) and supercritical drying in ethanol. The effect of the preparation conditions, including the RF concentration, molar ratio of resorcinol (R) to NaOH, and molar ratio of R to furfural, on the gelation time and bulk density was studied. The chemical structure of the organic aerogel was revealed by IR spectroscopy. The pyrolysis process of the organic aerogel was investigated by thermogravimetric analysis. According to characterizations of transmission electron microscopy and nitrogen adsorption, the organic and carbon aerogels we obtained had a three‐dimensional network that consisted of around 30‐nm particles, which defined numerous mesopores of less than 30 nm. As a result, the aerogels had high Brunauer–Emmett–Teller surface areas (698–753 m2/g) and large mesopore volumes (1.09–1.64 cm3/g). X‐ray diffraction characterization indicated that the carbon aerogel was more crystalline than activated carbon but less activated than graphite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1429–1435, 2005  相似文献   

6.
Titania–silica aerogels with different titania content were prepared. Four preparation methods differing mainly in approach to precursors hydrolysis were applied, while only three of them allowed total hydrolysis of silica precursor before titania precursor was added. The preparation of mixed products of titania and silica hydrolysis precursors containing gels was followed by high temperature supercritical drying (HTSCD) and thermal treatment at 500 °C. Obtained mixed oxides in form of aerogels were characterized by BET surface areas up to 1000 m2/g, mesopore volumes up to 1.6 cm3/g and bulk densities as low as 0.04 g/cm3. Even 18 h lasting aging did not allow to produce narrow diameter range mesoporous materials, their broad pore diameter distributions resulted in average pore sizes varying from 10 to nearly 30 nm. XRD measurements proved the presence of anatase crystalline form of titania, while silica was present in amorphous form. SEM studies indicated presence of isolated titania particles on titania–silica surface while joint hydrolysis method was applied. Titania–silica aerogels obtained by the simultaneous hydrolysis of precursors and the impregnation method showed high photocatalytic activity in degradation of salicylic acid in water. Activities of these mesoporous photocatalysts were higher than commercial P25 Degussa TiO2. Comparison of activity of pure TiO2 (P25 Degussa) and aerogels indicates higher utilization of titania present in mesoporous mixed oxides.  相似文献   

7.

In this study, hydrophobic silica aerogels were synthesized from rice husk ash-derived sodium silicate through sol-gel processing, solvent exchange, surface modification and ambient pressure drying. By volume, 10% of trimethylchlorosilane (TMCS) in 90% of n-hexane was used as a hydrophobic solution in the surface modification process. The physical and chemical properties of silica aerogels were characterized by density and porosity measurements, scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller theory (BET) and dynamic scanning calorimetry (DSC). The hydrogels prepared were in the form of 2.5 ± 0.5 mm beads and then converted into alcogels through solvent exchange with ethanol for repetition of 3, 6 and 9 days. It is found that the optimal quality of silica aerogels with the BET surface area as high as 668.82 m2/g was obtained from the alcogels of the solvent exchange period of 9 days. Depending on the size of the gel’s block, a longer solvent exchange period will ensure adequate removal of pore water. Post heat treatment on silica aerogels obtained from the 9 days of solvent exchange at 200, 300 and 400 °C for 2 h results in slight decreased of aerogel’s density from 0.048 g/cm3 to 0.039 g/cm3 and the hydrophobicity of the aerogels is decreased above 380 °C as confirmed by DSC analysis.

  相似文献   

8.
In the past two decades, resorcinol?Cformaldehyde (RF) gels have found widespread applications owing to their low density and adjustable pore size. They are usually prepared through sol?Cgel polymerization of the monomers in an aqueous media followed by evaporative or supercritical drying. In this study, RF gels were synthesized via sol?Cgel polymerization in the presence of sodium dodecylbenzene sulfonate (NaDBS) followed by ambient and supercritical drying. Dimensional measurements along with N2 sorption analysis and Scanning electron microscopy (SEM) micrographs revealed that pore structure of the gel is chiefly affected by NaDBS. In all samples (xerogels and aerogels), maximum densities were observed at a critical NaDBS concentration (~1?w/v%), whereas considerable pore size increments and pore size distribution broadenings were found at higher concentrations of NaDBS (??5?w/v%). The most increased mesopore volumes were detected in xerogels (133% for acetone-dried and 67% for water-dried samples), while concerning aerogels, the pore sizes enlargement to macropore regime was observed at 5?w/v% of NaDBS. SEM micrographs, in agreement with porosity analysis, depicted that very large pore volumes could be obtained when supercritical drying was employed. However, in the case of xerogels, a more dense structure with smaller pores (micro and mesopores) exists which can only be altered slightly when using large amounts of NaDBS. The results showed that the RF gel pore texture, independent of drying technique, was strongly influenced by the addition of NaDBS, which should be taken into account when using this surfactant in the gel formulation for a wide variety of applications.  相似文献   

9.
Tannin–formaldehyde carbon aerogels were prepared based on organic gels obtained by sol–gel polymerisation of tannin with formaldehyde that have been dried with supercritical acetone and pyrolysed at 900 °C. Tannins drastically reduce the cost of the gels, typically by a factor five, and polymerise in a wide range of pHs, leading to porous carbonaceous materials whose mesopore fraction ranges from 57% to 78%. The surface area and the total porosity can be as high as 715 m2 g−1 and 95%, respectively. Pore volumes and micro-mesopore-size distributions are similar to those of much more expensive carbon aerogels derived from resorcinol–formaldehyde resin. However, more easily adjustable pore textures may be obtained using tannins as precursors.  相似文献   

10.
Freestanding blocks of binary oxides, TiO2–SiO2 aerogel containing highly ordered mesophase structures were successfully prepared by a new synthesis method involving partial solvent evaporation followed by supercritical extraction and drying. The new method allows the routine preparation of large, crack-free aerogels of high titanium content (i.e., Ti/Si ? 0.75 or up to 50 wt.% Ti), ordered mesopores (i.e., 2–20 nm), large surface area (i.e., 400–900 m2 g?1) and pore volume (i.e., 0.7–2.6 cm3 g?1). Aerogels with well-ordered mesopores were obtained for Ti/Si atom ratios of 0.04–0.08. The size of ordered mesopore domains decreases with increasing titanium loading, and TS75 aerogels with Ti/Si = 0.75 display discontinuous microdomains of ordered mesoporosity within disordered phases interspersed with crystalline anatase TiO2. The greater permeability of the TS75 pore network resulted in fifteen times better activity for photocatalytic oxidation of airborne trichloroethylene compared to commercial Degussa P25 TiO2 and more than twice that TiO2–SiO2 aerogel (TS100) of similar titanium loading but with disordered and tortuous pore network.  相似文献   

11.
Freestanding and crack-free titania–silica aerogels with high titanium content (i.e., Ti/Si = 1) were successfully prepared by adjusting the hydrolysis of the two alkoxide precursors to a comparable rate during the sol–gel processing. Two titania–silica aerogels were prepared by ethanol and CO2 supercritical drying methods. Well-dispersed, nanometer-sized anatase crystal domains (ca. 10 nm) were crystallized by high temperature, ethanol supercritical drying. The crystalline domains were solidly anchored to the aerogel network by Ti–O–Si bonds. Titania–silica aerogels prepared by CO2 supercritical drying method were devoid of TiO2 crystals. A molecular-level mixing was achieved and anatase TiO2 was only crystallized with difficulty by high temperature calcination (1073 K). Both aerogels were mesoporous and displayed similar open pore structure that is readily accessible to reactant molecules. However, only the titania–silica aerogel with anatase TiO2 prepared by ethanol supercritical drying was active for the gas phase, photocatalytic oxidation of volatile organic compounds (i.e., isopropanol and trichloroethylene). Catalysts prepared from Degussa P25 TiO2 displayed lower activity under similar reaction conditions.  相似文献   

12.
High-surface-area zirconia aerogels with meso- to macroporosity have been prepared by an acid-catalyzed alkoxide-sol-gel route with tetrabutoxyzirconium(IV) and subsequent high-temperature supercritical drying at 578 K. The effect of solvent (ethanol, propanol, butanol, t-amylalcohol), amount of nitric acid, calcination temperature, and drying method was studied by nitrogen physisorption, X-ray diffraction, Fourier transform Raman and diffuse reflectance infrared Fourier transform spectrosopy, scanning electron microscopy, thermal analysis, and temperature-programmed desorption of NH3. After calcination in air at 573 or 773 K, the aerogels possess specific surface areas of up to 270 or 180 m2 · g–1, respectively. The use of ethanol as solvent resulted in the highest specific surface areas and pore volumes (up to 1.5 cm3 · g–1) among all samples studied, whereas bulky t-amylalcohol caused a shift of the maxima of the broad pore size distributions from 30 to 70 nm. With the corresponding xerogels, prepared via the same wet-chemical procedure but evaporatively dried at ambient temperature, butanol resulted in a maximum at 3 nm and t-amylalcohol in a bimodal pore size distribution with maxima at 3 and 15 nm. The variation of the acid-to-alkoxide ratio in the range 0.08–0.12 at a hydrolysis level of 4 did not significantly influence the structural properties of aerogels and related xerogels. In contrast to the aerogels, the xerogels had significantly lower specific surface areas and prominent microporosity. All uncalcined aerogels contained crystalline ZrO2, whereas the corresponding uncalcined xerogels were X-ray amorphous and crystallized only during calcination at 573 K. Both aerogels and xerogels possessed Brønsted-type and Lewis-type acid sites. With the xerogels, the density of acid sites on the surface was significantly lower. This behaviour is attributed to the higher amounts of organic residues which persisted in and on the xerogels up to 773 K and thus blocked the acid sites partially.  相似文献   

13.
仲铭  蒋新宇 《广州化工》2011,39(21):84-87
以正硅酸乙酯(TEOS)为硅源,采用酸、碱两步催化的溶胶-凝胶法,通过L9(34)四因素三水平正交试验,研究了无水乙醇(ETOH)、草酸(H2C2O4)和氨水(NH3 H2O)之间的摩尔比以及酸碱间隔时间对气凝胶性能的影响,并对所得产品结构和性能进行了比表面(BET)、傅立叶转换、红外线光谱(FTIR)和扫描电镜(SEM)表征,从而首次实现了SiO2气凝胶的常温合成。实验结果表明:原料最佳摩尔比为TEOS∶ETOH∶H2C2O4∶NH3.H2O=1∶7∶3.5∶2.5,酸碱最佳间隔时间为18 h,SiO2气凝胶的平均粒径为6.58 nm,密度为100 kg/m3,孔径分布为2~30 nm,比表面达到938.17 m2/g,室温条件下合成的SiO2气凝胶,不亚于高温合成法的产品性能。  相似文献   

14.
γ-Al2O3 modified supports with bimodal pore-size distributions were prepared by the addition of different types of natural sepiolites (α or β) into alumina. The supports were characterized by nitrogen physisorption, mercury porosimetry, X-ray diffraction, HRTEM and DTA techniques. A wide range of SBET (94–238 m2 g− 1), pore volumes (0.3–0.82 cm3 g− 1), and pore sizes were obtained in the supports depending on the type of sepiolite and its concentration added into alumina. The pore sizes were distributed as follows: mesopores around 1.8 nm in radius, mesopores in the radius range 3.0–25 nm and macropores between 25 and 300 nm in radius. The shape of the pore-size distributions depended on the type of sepiolite: the modal peak for pores larger than 3.0 nm was broad with β-type sepiolites and narrow with α-type sepiolites. The mesopore and macropore sizes can be controlled by the type of sepiolite as well as its concentration added to alumina.  相似文献   

15.
In this article, activated carbon aerogels (ACAs) were prepared by CO2 activation. Their pore structures were investigated by N2 adsorption–desorption analysis. ACAs have excellent microporosity (e.g. 0.36 cm3/g) and mesoporosity (e.g. 1.72 cm3/g). Adsorption characteristics of phenol, methylene blue, I2, and VB12 on ACAs in the liquid phase were studied by static adsorption experiments. Results showed that CO2 activation process is an effective way to introduce micropores in carbon aerogels, which is enhanced with the increase of activation time. As a result, the adsorption capacities of the four mentioned adsorbates on ACAs were improved gradually with the increase of activation time. However, mesopore volume is also a factor on improving adsorption properties for the relatively giant molecules methylene blue and VB12. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Zirconia aerogels have been prepared from butanolic zirconium(IV) tetra-n-butoxide diluted in ethanol via stoichiometric hydrolysis with water in ethanol. Nitric acid or acetic acid were used to modify the sol-gel process. After calcination in air at 573 K, the aerogel prepared with nitric acid possesses a specific surface area of 240 m2 · g–1 and a unimodal pore size distribution with a maximum at ca. 24 nm, whereas the use of acetic acid results in an aerogel with specific surface area of 228 m2 · g–1 and bimodal pore size distribution with maxima at 3 and 65 nm. The crystalline fractions of both aerogels are predominantly tetragonal with a small contribution of monoclinic ZrO2.  相似文献   

17.
Preparation and characterization of doped manganese dioxides   总被引:2,自引:0,他引:2  
Doped manganese dioxide samples, containing cations of different valency, were prepared. The doped and undoped samples contained small amounts of physically held and chemically bound water. The X-ray diffraction patterns of the doped samples were very similar to the pattern of the undoped sample and they all belong to the-modification mixed with-MnO2 and-Mn2O3. The specific surface area of the samples measured by nitrogen adsorption and calculated by the s-method was in the range 2–5 m2g–1, indicating a lower porosity and a lower reactivity compared to the-forms. From measurements of pore radii the pores were classified as lying in the mesopore/macropore range (8–35 nm). A decrease in the mean pore radius was observed for the doped samples except for that doped with Li+ ions.  相似文献   

18.
In the present work, results on the physico-chemical properties of the silica aerogels prepared by sol–gel process using mixtures of TMOS and MTMS as precursor are reported. The wide range of precursor mixture was studied with ratio of MTMS/TMOS in precursor mixtures as 0:100, 25:75, 50:50, 75:25, and 100:0 by volume. The gels with these precursor mixtures were successfully prepared using two step acid–base catalysis for gelation. Acetic acid (0.001 M) and NH4OH (1.5 M) were used for catalysis and resulting alcogels were subsequently dried by supercritical solvent extraction method. FTIR spectroscopy revealed that the aerogels show more intense peak at 1,260 and 790 cm−1 attributed to Si–CH3 resulting in more hydrophobic nature and these results were concurrent with adsorbed water content measurements made using Karl Fischer’s titration technique. The resulted aerogels were characterized using differential thermal analysis, thermo gravimetric analysis and surface area measurements. The surface area measurements showed an interesting trend that the surface area increased from 395 to 1,037 m2/g with increase in MTMS content in the precursor mixture from 0 to 50% and then again decreased to 512 m2/g for further increase in MTMS content from 50 to 100% in the precursor mixture. It was observed from our studies that silica aerogels prepared using a starting mixture of 50% TMOS and 50% MTMS resulted in high moisture resistance (adsorbed water content of 0.721% w/w), low density of 90 kg/m3 and the highest surface area of 1,037 m2/g, which has great potential for catalysis support applications.  相似文献   

19.
A series of titania–silica aerogels with different compositions were prepared using four different preparation methods. The preparation steps were followed by a high temperature supercritical drying (HTSCD). It was found that application of ethanol and 2-propanol as the solvents for the titania precursor (with or without modification with acetyloacetone) resulted in materials with BET surface area up to 990 m2/g, total pore volume up to 5.6 cm3/g and density as low as 0.041 g cm−3. Obtained aerogels were mesoporous materials with the average pore diameter in the range 11–27 nm. It was stated that application of the I method (prehydrolysis) resulted in aerogels with higher average pore diameter than other preparation methods while aerogels with the lowest average pore diameter were obtained using the so-called IV, impregnation method. Anatase form of titania was found in all prepared samples. The prepared aerogels were being applied as catalysts in photodegradation of salicylic acid solution in water. The obtained results suggest a much higher catalytic efficiency of titania, which is present in aerogel than it is in the case of commercial P25 Degussa titanium dioxide.  相似文献   

20.
纳米孔超级绝热材料气凝胶的制备与热学特性   总被引:22,自引:2,他引:22  
以正硅酸四乙酯(TEOS)为硅源,通过溶胶–凝胶及超临界干燥过程制备了SiO2气凝胶. 同时,采用相对廉价的多聚硅(E–40)为硅源,以三甲基氯硅烷(TMCS)为表面修饰剂,硅油为干燥介质, 在常压条件下制备了同样具有纳米多孔结构的SiO2气凝胶. 用透射电镜、扫描电镜及孔径分布仪对其结构进行了表征,并用动态热线法对其热学特性进行了测试. 结果表明: 两种方法制备的气凝胶均是典型的纳米孔超级绝热材料,后者热导率略高但成本低许多,所以更具应用推广潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号