首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexity of well and reservoir conditions demands frequent redesigning of water plugging polymer gels during enhanced oil recovery (EOR). In the present study, we developed coal fly ash (CFA) based gels from polyacrylamide (PAM) polymer and polyethyleneimine (PEI) crosslinker for water control in mature oil fields. The CFA acts as an inorganic additive to fine-tune gelation performance and rheological properties of PAM/PEI gel system. Hence, effects of various CFA (0.5 to 2 wt%), PAM (2 to 8.47 wt%) and PEI (0.3 to 1.04 wt%) concentrations on gelation kinetics and dynamic rheology of pure PAM/PEI gel and PAM/PEI-CFA composite gels were studied at a representative reservoir temperature of 90 oC. Experimental results reveal that gelation time of pure PAM/PEI gel increases with increasing CFA addition. Further observation demonstrates that increasing PAM and PEI concentrations decreases the gelation times of PAM/PEI-CFA composite gels. Gelation time was found to be within 3-120 hours. Understanding the property of reaction order enables better prediction of gelation time. Dynamic rheological data show that viscoelastic moduli (G′ and G″) of various PAM/PEI-CFA composite gels improved better as compared to the pure PAM/PEI gel across the strain-sweep and frequency-sweep tests. SEM analysis of selected samples at 72 hours and 720 hours of gelation activity consolidated gelation kinetics and dynamic rheological results. These polymer gels are excellent candidates for sealing water thief zones in oil and gas reservoirs.  相似文献   

2.
Polymer gels have been widely used for water shutoff in mature oil fields. In this paper, polyacrylamide (PAM)–montmorillonite (MMT) nanocomposites (NC) were prepared through in situ intercalative polymerization. Fourier transform infrared spectroscopy and X‐ray diffraction were conducted to characterize the prepared PAM/MMT nanocomposites. The gelation performance of poly(ethylene imine) (PEI) crosslinking PAM/MMT nanocomposite gel system (NC/PEI gel system) was systematically investigated by bottle testing and viscosity measurement methods. The results showed that the gelation performance of the NC/PEI gel system was greatly affected by the total dissolved solids, PAM/MMT nanocomposite concentration, and PEI concentration. The NC/PEI gel system exhibited much better thermal stability and gelation performance than the PAM/PEI gel system at the same conditions. The gelation performance after flowing through porous media of the NC/PEI gel system before injection and that of the subsequently injected gel system was different. The gel strength decreased and the gelation time was delayed after the gel system before injection was flowed through porous media. However, the gel strength of the subsequently injected gel system did not decrease, and only the gelation time was delayed after flowing through porous media. This study suggests that the NC/PEI gel system can be used as a potential water‐shutoff agent in high‐temperature reservoirs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44243.  相似文献   

3.
Incorporation of biofillers in polymeric hydrogels has continued to receive great attention in recent times because of their excellent properties. In this study, polyacrylamide (PAM) and polyethyleneimine (PEI) were used to develop novel composite hydrogels filled with date seed powder (DSP) via chemical crosslinking technique. Pristine PAM/PEI hydrogel and PAM/PEI‐DSP hydrogels at various DSP loadings were fabricated and subjected to gelation at 40°C for 24 h. The impact of various DSP loadings on the hydrogel samples developed was investigated using hybrid rheometer, SEM, XRD, and FTIR instruments, respectively. Rheological measurements confirmed the viscoelastic responses of the neat PAM/PEI hydrogel and the PAM/PEI‐DSP hydrogels reinforced with various DSP contents (0.8, 2.4, and 4 wt %). The dynamic strain, dynamic frequency and time sweep tests demonstrated that PAM/PEI‐DSP hydrogels were slightly more elastic than the virgin PAM/PEI hydrogel. The SEM characterization revealed the surface micrographs of the neat PAM/PEI hydrogel and the PAM/PEI‐DSP hydrogels at different DSP loadings to be smooth, homogeneous, and dense. Besides, the SEM micrographs supported the incorporation of DSP in the PAM/PEI‐DSP hydrogel samples. XRD analysis showed that the structures of neat PAM/PEI hydrogel and PAM/PEI‐DSP hydrogels filled with various DSP contents were predominantly amorphous while FTIR results confirmed the functional groups and evidence of crosslinking in the neat PAM/PEI hydrogel and the PAM/PEI‐DSP hydrogels embedded with different DSP contents. It is believed that these new hydrogels have huge development potentials and promising future in wastewater treatment and removal of heavy metal ions in aqueous solutions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42110.  相似文献   

4.
Polymer gels are effective tools that are still widely used in mature oilfield development to stop unwanted fluid production from oil and gas wells, but conventional gelant formulations have become increasingly difficult to apply at low and ultralow temperatures. Because of this situation, the gelation performance of phenol–formaldehyde‐based gel systems at a low temperature of 25°C is discussed in this article. The results show that the gelation time and strength of the gel systems can be perfectly controlled by the adjustment of the polymer concentration, the molecular weight, the crosslinking agent concentration, the ammonium salt concentration, and the composition. The polymer concentration and molecular weight can affect not only the gelation time and the gel strength but also its stability. The ammonium salt concentration affected not only the gelation time but also its viscosity before a detectable gel formed. Among them, the polymer concentration was the most important factor affecting the gel stability. For low‐temperature reservoirs, the phenol–formaldehyde‐based gel system achieved a much longer gelation time. Polymer gels formulated with a combination of 0.2–0.4 wt % polymer, 0.5–1.0 wt % formaldehyde or phenol–formaldehyde, and 0.1–0.6 wt % ammonium salt, and we added 0.02–0.03 wt % resorcinol to provide a gelation time between 2 h and 2 days. The maximum gel strength reached code I. The results of this study suggest that the formaldehyde‐based gel system could be used effectively in low‐temperature reservoirs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40657.  相似文献   

5.
A polymer gel is one of the common remediate methods to either reduce or totally block excessive water production in oilfields. Some systems demonstrated an excellent performance in treating the problem like polyacrylamide tert‐butyl acrylate (PAtBA)/polyethylenimine (PEI). In this study, polyacrylamide (PAM) was introduced as a cheap alternative to PAtBA that can tolerate high salinity reservoirs. The thermal stability of the PAM/PEI polymeric gel in saline water was examined at 150°C (302F). Samples prepared in sea water showed better stability compared with distilled and field water. Dynamic rheology and core‐flooding experiments were used to evaluate the PAM / PEI gel system at high temperatures. NaCl and NH4Cl were evaluated as a possible retarders for delaying the gelation time in order to achieve a successful placement. NH4Cl was found to be more effective retarder. Core‐flooding tests were conducted in sandstone and carbonate cores. The subject polymer gel was injected at rates typical of those in field applications. The injectivity of PAM/PEI was tested in Berea sandstone cores with initial permeability of ~45 mD. The post‐treatment of the system showed a permeability reduction of ~94% for a period of two weeks. The injectivity in low permeability carbonate cores required more retardation compared with the injectivity in sandstone cores. The gel reduced the permeability to brine in Indiana limestone core by 99.8% for more than 5 months. Rheology of cured gel samples indicated that the gel strength needs about one day of curing in the core for the strength to stabilize. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41869.  相似文献   

6.
A high‐temperature (200°C)‐resistant polymer gel system was developed from partially hydrolyzed polyacrylamide (HPAM), chromium lactate (CrL), and water‐soluble phenol/formaldehyde resin (WPF) mixed cross‐linkers. Rheological measurements indicated that the gelation process of the gel system could be divided into four successive steps: induction, first cross‐linking with metal cross‐linker, secondary cross‐linking with organic cross‐linker, and stabilization. Effects of various parameters that affect the gelation time and gel strength including polymer concentration, cross‐linker concentration, salinity, pH, and the gelation temperature were evaluated. Gelant formulated with 0.5 wt % HPAM, 0.1 wt % CrL, and 0.9 wt % WPF and treated at 80°C for 48 h showed sufficient gelation time, high rigidity, and good thermal stability. Morphology observation by scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the gel had compact network microstructure. A cross‐linking mechanism for the gel system was proposed based on the gelation process and experimental results. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42261.  相似文献   

7.
Polyacrylamide (PAM) and its derivatives are the most commonly used polymers in the preparation of polymeric gels for water control in petroleum reservoirs. This study involved the use of polyethylenimine (PEI) as a crosslinker for PAM. In this study, we investigated PAM alkaline hydrolysis at high temperatures. The effects of salts [sodium chloride (NaCl) and ammonium chloride (NH4Cl)] on the degree of hydrolysis (DH) of PAM were investigated. These salts were used as retarders to elongate the gelation time of the PAM/PEI system. The data obtained from 13C‐NMR was used to understand the retardation mechanisms by salts. We found that NH4Cl accelerated the extent of hydrolysis more in comparison with NaCl. Moreover, the apparent viscosity of the hydrolyzed samples was measured. PAM hydrolysis in the presence of NH4Cl resulted in a lower solution viscosity than that in the presence of NaCl. Therefore, NH4Cl was more effective in shielding negative charges on the carboxylate groups of the partially hydrolyzed polyacrylamide (PHPA) chain. NaCl and NH4Cl were compatible with the PHPA/PEI system, but sodium carbonate showed a white precipitate. In addition, high‐temperature/high‐pressure elastic modulus data were reported for the first time for this system. Differential scanning calorimetry was coupled with rheology to explain the PAM/PEI crosslinking in the presence of salts. Models were developed to assess the impact of the salts on the PAM DH and the induction period before gelation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41185.  相似文献   

8.
In this work, carboxylated multi‐walled carbon nanotubes (MWCNTs) were functionalized with riboflavin as a biological molecule under microwave irradiation. Solution blending method was used to incorporate different modified MWCNTs content (5, 10, and 15 wt %) into a chiral and biodegradable poly(ester‐imide) (PEI) to fabricate PEI‐based nanocomposites. The products were characterized for assessing the spectroscopic, thermal, and morphological properties by Fourier‐transform infrared spectroscopy, thermogravimetric analysis (TGA), X‐ray diffraction, transmission electron microscopy (TEM), and field‐emission scanning electron microscopy (FESEM). Optically active PEI was prepared by step‐growth polymerization of amino‐acid‐based diacid and aromatic diol. Functionalized MWCNTs were well dispersed in the PEI matrix and their distribution was homogeneous. This was confirmed by morphology study of the fractured surfaces of nanocomposites by FESEM and TEM. The addition of functionalized MWCNTs improved the thermal stability of NCs compared to the pure PEI. It was found from TGA data that temperature at 10% weight loss was increased from 409°C for pure PEI to 417, 420, and 424°C for nanocomposites containing 5, 10, and 15% functionalized MWCNTs, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42908.  相似文献   

9.
《应用陶瓷进展》2013,112(1):38-43
Abstract

The influence of aluminium titanate particulates as second phase reinforcement for alumina matrix composites has been investigated with respect to sintering characteristics, microstructural development, and associated mechanical properties. Composites were fabricated by gel assisted extrusion, using boehmite gel as binder. The aluminium titanate precursor was synthesised by a sol-gel technique and dispersed intimately in the alumina matrix by a colloidal method. A boehmite sol was used as dispersing medium and the extrudable composite paste with high viscosity and yield stress was obtained by controlled gelation followed by filtration. The extruded composite was dried and sintered at a temperature in the range 1350-1550°C. The sintered bodies were characterised in terms of density, room temperature flexural strength, microhardness, and microstructure. Aluminium titanate contents up to 10 wt-% were found to lower the sintering temperature of alumina, from 1550 to 1400°C. The composite sintered at 1400°C attained 97% of theoretical density and showed room temperature flexural strength of 318 MPa and microhardness of 21 GPa. The addition of aluminium titanate resulted in a high density alumina composite at lower sintering temperature with an average grain size of about 2 μm.  相似文献   

10.
Thermo‐sensitive hydrogels are considered ideal for applications in the biomedical fields for their biocompatibility, flexibility, tissue‐like water content, and reversible gelation property. By adjusting sufficient hydrophilic–hydrophobic balance in block copolymer structure, thermogel's critical gelation temperature (CGT) can be modified to be near the physiological temperature, which makes it an appealing candidate for in situ gel depot. In this study, we report successful syntheses of novel multiple block copolymer compounds, denoted as dual‐stimuli sensitive polymers (DSSPs), by copolymerizing Pluronic P104 (7100 Da) and 2,2‐bis(aminoethoxy)propane (BAP) using diisocyanate linkers, l ‐lysine ethyl ester diisocyanate (DSSP‐1), and 1,6‐hexamethylene diisocyanate (DSSP‐2). Through effective elongation of polymer chain lengths (DSSP‐1: 41,760 Da, DSSP‐2: 41,230 Da), Pluronic P104's reversible thermal gelation properties were enhanced, as demonstrated by lowered CGTs (DSSP‐1: 36 °C, DSSP‐2: 38.7 °C; 15 wt %) that is near the physiological temperature. Furthermore, integration of acid‐labile BAP allowed rapid pH‐dependent degradation of the polymer, which was displayed by gel permeation chromatography and release profiles of nile red and irinotecan from polymeric micelles and gels, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46552.  相似文献   

11.
Proton exchange membranes consisting of Nafion® and crystallized titania nanoparticles have been developed to improve water‐retention and proton conductivity at elevated temperature and low relative humidity. The anatase‐type titania nanoparticles were synthesized in situ in Nafion solution through sol–gel process and the size of the formed titiania nanoparticles is in the range of 3–6 nm. The formed nanoparticles are well‐dispersed in Nafion solution at the titania concentration of 5 wt %. The glass transition temperature of the formed Nafion‐titania composite membrane is about 20oC higher than that of plain Nafion membrane. At elevated temperature (above 100°C), the Nafion‐titania nanocomposite membrane shows higher water uptake ability and improved proton conductivity compared to pure Nafion membrane. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
In the present work, attempts have been made to prepare nanocomposite type of hydrogels (NC gels) by crosslinking the polyacrylamide/montmorillonite (Na‐MMT) clay aqueous solutions with chromium (III). The X‐ray diffraction patterns of the NC gels exhibited a significant increase in d001 spacing between the clay layers, indicating the formation of intercalated as well as exfoliated type of morphology. Exfoliation of the clay layers through out the gel network was found to be predominated, which evidences the high interaction between the polyacrylamide segments and montmorillonite layers. Gelation time as well as variation of viscoelastic parameters such as storage modulus (G′) of the gel network during gelation process at 75°C was studied and followed by rheomechanical spectroscopy (RMS). The NC gels prepared with lower crosslinker concentration showed higher strength and elastic modulus compared with the similar but unfilled polyacrylamide gel. This distinct characteristic of the NC gels yields a gel network structure with high resistance towards syneresis at high temperature in the presence of the oil reservoir formation water. The effects of the composition, such as clay content, crosslinker concentration, and also water salinity upon the gelation rate, gel strength as well as rate of syneresis have been investigated. To optimize the injectivity of the intercalated polyacrylamide solution before the onset of gelation with the gel strength of the final developed gel, sodium lactate was employed as retarder. This was found to be effective to balance these two characteristics of the NC gels, which are aimed to be used for water shut‐off and as profile modifier in enhanced oil recovery (EOR) process during water flooding process. The nanocomposite gels showed much more elasticity and extensibility at low crosslinker concentration compared with the similar but unfilled gel, which makes the NC gels suitable as an in‐depth profile modifier, and also as an oil displacing agent in the heterogeneous oil reservoir in chemical EOR. Effects of the clay content on the thermal stability of the gel network have also been investigated by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) has been performed upon the NC‐gel samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2096–2103, 2006  相似文献   

13.
A comprehensive thermal and rheological characterisation of a commercially important aerospace resin system modified with a thermoplastic toughener is presented here. The primary focus has been the understanding of how the cure kinetics and mechanism relate to other processes such as phase separation during cure. Differential scanning calorimetry has shown that thermoplastic modification does not affect the cure mechanism significantly and that the process was dominated by an autocatalytic process up to vitrification after which diffusion‐controlled processes dominate regardless of thermoplastic concentration. Thermoplastic addition at 10 wt.‐% PEI was found to increase the final cure conversion compared with the neat resin and inhibit the onset of diffusion control below a cure temperature of 160 °C. At 20 wt.‐% PEI concentration the final conversion and the onset of diffusion control were similar until 150 °C, after which they displayed lower values than the neat resin. Rheological analysis showed that the phase separation process could be followed conveniently through the changes in viscosity and exhibited effects consistent with expected variations in morphology. The 10 wt.‐% PEI system displayed abrupt increases in viscosities which were indicative of a dispersed particulate morphology, while the 20 wt.‐% PEI system displayed more complex behaviour consistent with a phase‐inverted or co‐continuous structure. The gelation process was shown to obey a power law model although the local environment or morphology of the reactive epoxide group at higher PEI concentrations was shown to affect the fit to the model.

  相似文献   


14.
Poly(N-isopropylacrylamide) (NIPAAm) gels were formed by photopolymerization of NIPAAm in the absence of a crosslinker using a water solvent at 25°C. Factors affecting formation were the wavelength region of irradiated light, the type of photoinitiators, and the concentrations of the photoinitiator and monomer. A high-pressure mercury lamp (400 W) was used as a light source. An NIPAAm concentration of 10 wt % and irradiation time of 15 h was used for the photopolymerization. The gel (68% yield) was formed when the quartz glass system was used, but no gelation was observed for the Pyrex glass system that transmits light with π > 290 nm. The gel (100% yield) was easily formed, even in the latter system, when 30 mmol/L of hydrogen peroxide and potassium persulfate were used as the photoinitiator. Water soluble photoinitiators such as ferric chloride and sodium anthraquinone-2,7-disulfonate were not effective for the gel formation. Yield of the gel increased with increasing the potassium persulfate concentration (1–30 mmol/L), but it decreased when a high concentration of hydrogen peroxide (60 mmol/L) was used. The gel yield increased with the NIPAAm concentration (5–20 wt %). The degree of swelling of the resultant poly(NIPAAm) gels, which was measured by immersing the gels in water at various temperatures (0–50°C) for 24 h, steeply decreased at about 30°C with increasing temperature, exhibiting a temperature-responsive character. The gels swelled and shrank in water below and above the temperature, respectively. The extent of the character depended on the concentrations of hydrogen peroxide and monomer. The formation mechanism of the gel in the photopolymerization of NIPAAm using hydrogen peroxide photoinitiator was discussed. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1313–1318, 1997  相似文献   

15.
This work was concerned with investigating the processing behavior of thermoplastics reinforced with a melt processable phosphate glass under extensional flows at temperatures used for forming and shaping operations. Injection molded blends consisting of polyetherimide (PEI) and polyphenylene sulfide (PPS) reinforced with 30‐60 wt% phosphate glass were exposed to uniaxial and planar deformation at temperatures above the Tg of the phosphate glass (234°C) to evaluate the effects on the morphology and mechanical properties of the composites. Tensile testing at elevated temperatures (250‐300°C) was used to evaluate the forming behavior and ascertain the conditions most suited for the deformation of the composite blends. A temperature approximately 35°C above the Tg of the P‐glass was found to offer conditions most conducive to the deformation of the PEI/P‐glass blends. The phosphate glass reinforced PEI was found to offer greater retention of properties and smoother surfaces than an E‐glass filled material when exposed to shearfree deformation similar to that seen in a process such as thermoforming. For PPS based composites, the application of planar shearfree deformation near the melting point of the PPS (≈︁ 283°C) resulted in the elongation of the phosphate glass phase which served to enhance the stiffness of the composite blends along the principal deformation direction.  相似文献   

16.
The composite‐crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) gels were prepared by grafting N‐isopropylacrylamide on the surface of glass plates modified by organosilanes. The glass plates as the substrate increase the mechanical strength of composite PNIPAAm gel layers. We investigated the effects of a series of organosilanes and the reaction time of organosilanes on surface characteristics, such as the static contact angle and the layer thickness. We discuss the equilibrium swelling ratio and the water release behavior of the gel layers in terms of the crosslinking density of the composite gels. The composite gels exhibit not only the characteristics of remarkable water release but also the reversed hydrophilic–hydrophobic surface properties. The gel layers are hydrophilic under 25°C and change to hydrophobic above 40°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1–11, 1999  相似文献   

17.
In this article, we synthesize and investigate the rheological properties of a random copolymer PAM‐ran‐PAH of polyacrylamide (PAM) and polyacryloyl hydrazide (PAH) and compare with the results of PAM at different temperature (30 and 80 °C) and salinity (0 and 1.0 wt %). At 30 °C, both PAM and PAM‐ran‐PAH exhibited non‐Newtonian rheology with both shear thinning and shear thickening responses. The rheological properties such as viscosity and moduli (G′ and G″) of PAM significantly deformed at elevated temperature (80 °C) and salinity (1.0 wt %), resulting no recovery in viscosity and moduli. On the other hand, the effect of temperature and salinity was found to be least on PAM‐ran‐PAH and showed better stability with the possibility of recovering its original rheological properties. The performance of PAM and PAM‐ran‐PAH was also characterized by enhanced oil recovery tests. The use of PAM‐ran‐PAH for polymer flooding, due to its stable rheology, resulted in an increase in the oil recovery than PAM. In general, the rheological behavior of PAM‐ran‐PAH as a chemical agent proved to be thermally stable than PAM, which clearly supports its use for saline environment and high temperature applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44648.  相似文献   

18.
Concentrated solutions of acrylonitrile polymers exhibit reversible gelation. The rate of gelation at 25°C. was determined for various solutions of an acrylonitrile copolymer containing 7.7% vinyl acetate in mixtures of dimethylacetamide (solvent) and water (nonsolvent) by measuring the shear modulus of the forming gel as a function of time. The mechanical properties were also measured on a series of gels formed by cooling solutions to ?78°C. It was found that both the rate of gelation at 25°C. and the modulus of gels formed at ?78°C. increase very rapidly as either the solids level of the solution of the water content of the solvent is increased. The gelation rate data wree correlated with the gel melting points of the gels. The results are discussed and compared with the analogous but limited data available for other systems.  相似文献   

19.
Silica xerogels were produced from rice hull ash (RHA), and the structure, density and mechanical strength of the gels were investigated. Silica was extracted as sodium silicate from RHA using 1M NaOH. This silicate solution was concentrated by volume reduction and used to obtain silica concentrations of 0.04, 0.06, 0.08, 0.10, and 0.12 g cm−3. The pH values of these silicate solutions were adjusted to 9.0, 10.0, 10.5, or 11.0 to produce silica gels. The silica gels produced were then dried at 80 °C for 24 h. X‐ray diffraction demonstrated the amorphous nature of silica gels. Diffuse reflectance Fourier Transform Infrared (FTIR) spectroscopy was used to investigate the effect of gelation pH, and silica concentration on the chemical structure of the xerogel and concomitant effect on density and mechanical strength of the xerogel. The FTIR spectra demonstrated that at higher pH of gelation, siloxane bonding was the primary network in the xerogel. As the pH of gelation decreased, the structural silica gel network became the major interaction in the silica xerogel. At each gelation pH, the silica gel network increased with increase in silica concentration. The higher pH led to condensed glassy solids, while higher silica concentration produced highly porous silica xerogel. Hence, gelation pH and silica concentration of gel‐forming solution had significant effects on the density and the mechanical strength of xerogels produced from rice hull silica. © 2000 Society of Chemical Industry  相似文献   

20.
A series of copolymers and glass fiber composites were successfully prepared from 2,2‐bis [4‐(3,4‐dicyanophenoxy) phenyl] propane (BAPh), epoxy resins E‐44 (EP), and polyarylene ether nitriles (PEN) with 4,4′‐diaminodiphenyl sulfone as curing additive. The gelation time was shortened from 25 min to 4 min when PEN content was 0 wt % and 15 wt %, respectively. PEN could accelerate the crosslinking reaction between the phthalonitrile and epoxy. The initial decomposition temperatures (Ti) of BAPh/EP copolymers and glass fiber composites were all more than 350°C in nitrogen. The Tg of 15 wt % PEN glass fiber composites increased by 21.2°C compared with that of in comparison with BAPh/EP glass fiber composite. The flexural strength of the copolymers and glass fiber composites reached 119.8 MPa and 698.5 MPa which increased by 16.6 MPa and 127.3 MPa in comparison with BAPh/EP composite, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号