首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrated a practical microfluidic approach to fabricate extremely monodisperse millimeter‐sized poly(divinylbenzene) (PDVB) foam shells with the comparable double emulsion templates. At millimeter scale, the emulsification process was more complex and more difficult to control due to the very large characteristic sizes and velocities. A new kind of three‐dimension co‐axial microfluidic chip including a Y‐shaped compound channels was designed to maintain more stable and robust flow field and regular emulsification. The hydrodynamic features of the double‐emulsion droplet formation were investigated. The results showed perfect encapsulation and continuous emulsification could be obtained by one‐step dripping (Caouter ∈ (0.018,0.09)). The size of the outlet channel would be comparable with the target droplet. Besides, droplet diameters could similarly be plotted as a function of capillary number close to the general microfluidic ones. After photo‐polymerization and supercritical drying, spherical and concentric PDVB foam shells were obtained to satisfy the inertial fusion energy experiments with large diameter (3–5.45 mm), thin wall thickness (50–250 μm), low density (50–300 mg/cm3), and a less than 0.1% polydispersity. POLYM. ENG. SCI., 58:1184–1192, 2018. © 2017 Society of Plastics Engineers  相似文献   

2.
A simple fluorescence technique is proposed for the measurement of the diffusion coefficient of oxygen into poly(methyl methacrylate) (PMMA) latex‐poly(divinylbenzene) (PDVB) composite films. Percolation model was used by using photon transmission (PT) technique to interpret the distribution of PDVB particles in PMMA lattice. Optical results were interpreted according to site percolation theory. The optical percolation threshold value and critical exponent were calculated as, Rc = 0.03 and, β = 0.34, respectively. PT measurements were performed for eight different PDVB content (0, 1.5, 3, 5, 10, 20, 40, and 60) wt%. Pyrene (P) functionalized PDVB cross‐linked spherical microspheres with diameters of 2.5 μm were synthesized by using precipitation polymerization technique followed by click coupling reaction. The diameter of the PMMA particles prepared by emulsion polymerization was in the range of 0.5–0.7 μm. PMMA/PDVB composite films were then prepared by physically blending of PMMA latex with PDVB microspheres at various compositions. The steady‐state fluorescence method was used to monitor oxygen diffusion into these (0, 5, 10, 20, and 40 wt%) latex films. Diffusion coefficients, D, of oxygen were determined by the fluorescence quenching method by assuming Fickian transport and were found to be increased from 1.8 × 10−11 to 36.6 × 10−11 cm2 s−1 with increasing PDVB content. This increase in D values was explained with formation of microvoids in the film by using PT technique. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

3.
This work reports on the application of steady state fluorescence (SSF) technique for studying film formation from poly(methyl methacrylate) (PMMA) latex and poly(divinylbenzene) (PDVB) microsphere composites. Pyrene (P) functionalized PDVB cross‐linked spherical microspheres with diameters of 2.5 μm were synthesized by using precipitation polymerization technique followed by click coupling reaction. The diameter of the PMMA particles prepared by emulsion polymerization were in the range of 0.5–0.7 μm. PMMA/PDVB composite films were then prepared by physically blending of PMMA latex with PDVB microspheres at various composition (0, 1, 3, 5, 10, 20, 40, and 60 wt%). After drying, films were annealed at elevated temperatures above Tg of PMMA ranging from 100 to 270°C for 10 min time intervals. Evolution of transparency of the composite films was monitored by using photon transmission intensity, Itr. Monomer (IP) and excimer (IE) fluorescence intensities from P were measured after each annealing step. The possibility of using the excimer‐to‐monomer intensity ratio (IE/IP) from PDVB microparticles as a measure of PMMA latex coalescence was demonstrated. Diffusion of the PMMA chains across the particle–particle interfaces dilutes the dyes, increasing their separation. The film formation stages of PMMA latexes were modeled by monitoring the IE/IP ratios and related activation energies were determined. There was no observable change in activation energies confirming that film formation behavior is not affected by varying the PDVB composition in the studied range. SEM images of PMMA/PDVB composites confirmed that the PMMA particles undergo complete coalescence forming a continuous phase in where PDVB microspheres are dispersed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
Stabilized and dispersed superparamagnetic porous nanogels based on sodium acrylate (AA‐Na) and acrylamide (AM) in a surfactant‐free aqueous system were synthesized via solution polymerization at room temperature. The formation of magnetite nanoparticles was confirmed and their properties characterized using Fourier transform infrared spectroscopy. Extensive characterization of the magnetic polymer particles using transmission electron microscopy (TEM), dynamic light scattering and zeta potential measurements revealed that Fe3O4 nanoparticles were incorporated into the shells of poly(AM/AA‐Na). The average particle size was 5–8 nm as determined from TEM. AM/AA‐Na nanoparticles with a diameter of about 11 nm were effectively assembled onto the negatively charged surface of the as‐synthesized Fe3O4 nanoparticles via electrostatic interaction. Crosslinked magnetite nanocomposites were prepared by in situ development of surface‐modified magnetite nanoparticles in an AM/AA‐Na hydrogel. Scanning electron microscopy was used to study the surface morphology of the prepared composites. The morphology, phase composition and crystallinity of the prepared nanocomposites were characterized. Atomic force microscopy and argon adsorption–desorption measurements of Fe3O4.AM/AA indicated that the architecture of the polymer network can be a hollow porous sphere or a solid phase, depending on the AA‐Na content. © 2013 Society of Chemical Industry  相似文献   

5.
The objective of these investigations was to increase the use temperature of novel star‐block polymers consisting of a crosslinked polydivinylbenzene (PDVB) core from which radiate multiple poly(isobutylene‐b‐polystyrene) (PIB‐b‐PSt) arms, abbreviated by PDVB(PIB‐b‐PSt)n. We achieved this objective by blending star‐blocks with poly(phenylene oxide) (PPO) that is miscible with PSt. Thus, various PPO/PDVB(PIB‐b‐PSt)n blends were prepared, and their thermal, mechanical, and processing properties were investigated. The hard‐phase glass‐transition temperature of the blends could be controlled by the amount (wt %) of PPO. The blends displayed superior retention of tensile strengths at high temperatures as compared to star blocks. The melt viscosities of blends with low weight percentages of PPO were lower than those of star blocks. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2866–2872, 2002  相似文献   

6.
Guangyu Liu  Han Zhang  Yongmei Wang 《Polymer》2007,48(20):5896-5904
Monodisperse silica/polydivinylbenzene (SiO2/PDVB) and silica/poly(ethyleneglycol dimethacrylate) (SiO2/PEGDMA) core-shell hybrid microspheres were prepared by a two-stage reaction with silica particles' grafting of 3-(methacryloxy)propyltrimethoxysilane (MPS) as core and PDVB or PEGDMA as shell, in which the MPS-modified silica core with diameter of 238 nm was synthesized by Stöber method and subsequently grafted with MPS as the first-stage reaction. The PDVB or PEGDMA shell was then encapsulated over the MPS-modified silica core by distillation precipitation polymerization of divinylbenzene (DVB) or ethyleneglycol dimethacrylate (EGDMA) in neat acetonitrile with 2,2′-azobisisobutyronitrile (AIBN) initiator as the second-stage reaction. The encapsulation of PDVB and PEGDMA on modified silica core particles was driven by the capture of DVB or EGDMA oligomer radicals via the vinyl groups on the surface of the modified silica cores during the second-stage polymerization in the absence of any stabilizer or surfactant. The shell thickness of the core-shell hybrid particles was controlled by the feed of DVB or EGDMA monomer during the polymerization. Hollow PDVB or PEGDMA microspheres with various shell thickness were further developed after selective removal of the modified silica cores with hydrofluoric acid. The resultant core-shell hybrid materials and hollow microspheres were characterized by transmission electron microscopy (TEM), and Fourier transform infrared spectra (FT-IR).  相似文献   

7.
The light‐curable composite of siloxane/hydroxyapatite (HA) had been successfully achieved by photopolymerization of a kind of gel combined tetraethoxyorthosilicate (TEOS) and 3‐methacryloxypropyltrimethoxysilane (MAPS) with siloxane‐modified nano‐HA (HA‐g‐Si). HA‐g‐Si was prepared by grafting reaction of 3‐isocyanatopropyltrimethoxysilane (IPS) onto the surface of HA. Then, TEOS and MAPS were mixed as precursor, and photoinitiator 2‐hydroxy‐4′‐(2‐hydroxyethoxy)‐2‐methylpropiophenone (Irgacure 2959) and as‐prepared HA‐g‐Si were added into the precursor to form a homogenous and sticky gel. The movable gel that could be cured with UV light resulted in various sharp immovable composites of siloxane/HA in different mold. The HA, HA‐g‐Si nanoparticles, and composites were analyzed by Fourier transformed infrared spectroscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, mechanical testing, and water contact angles. It could be a promising bone repairing material for orthopedic application. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

8.
Silicon carbide (SiC) foam prepared by polymer infiltration and pyrolysis (PIP) process was further densified with β-SiC by chemical vapor infiltration (CVI) technique. Scanning electron microscopy and high-resolution transmission electron microscopy images confirmed the presence of highly entangled and branched in situ grown SiC wires of uniform diameter (∼500 nm) over the struts of open-cell SiC foam. A uniform rate increase in diameter from nanometer to micron range (∼11 μm) was observed with an increase in the CVI reaction period. X-ray diffraction results showed the formation of highly crystalline β-SiC structure along the <111> direction with stacking faults. The formation of SiC wires was explained by the vapor–liquid–solid mechanism and evenness of the surface and uniform growth rate of SiC confirmed the homogeneous concentration of gaseous species during CVI reaction. The compressive strength increased with relative density, with maximum values of 5.5 ± 1.26 MPa for ultimate SiC foam (ρ = 400 kg/m3) prepared by hybrid PIP/CVI technique. The thermo-oxidative stability of the resultant foam was evaluated up to 1650°C under air and shows excellent thermal stability compared to SiC foam prepared by PIP route. The densified SiC foam can find potential applications in the field of hot gas filters, catalyst supports, microwave absorption properties, and heat insulation for high-temperature applications.  相似文献   

9.
Glucose‐sensitive and fluorescence copolymer micelles were designed and prepared via a combination of photoinitiated polymerization and enzymatic transesterification. The water‐soluble photoinitiator and emulsifier 2‐oxooctanoic acid self‐polymerized dimer molecules under UV irradiation were characterized by mass spectrometry. The fluorescence dye (9‐anthracene alcohol) and biocompatible hydrophilic chains [poly(ethylene glycol)] were introduced to the polymer chains during the photopolymerization and enzymatic transesterification processes. The as‐prepared copolymers were confirmed by 1H‐NMR spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering. The resulting copolymers exhibited excellent glucose sensitivity and stability against protein. The optical fluorescence properties of the copolymer micelles were investigated with fluorescence spectrophotometry, fluorescence microscopy, and confocal laser scanning microscopy. Because of the amphiphilic feature, the micelles could be self‐assembled and used to load insulin. The controlled release of insulin was evaluated and was triggered by glucose in vitro. This study provided a new strategy for fabricating functional carriers as self‐regulated insulin‐release systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43026.  相似文献   

10.
Surface modification of fumed nanosilica was performed by using n‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane as a coupling agent. Then, modified nanosilica was utilized in the preparation of polyurethane rigid foam. The characterization and the study of properties were done by some techniques, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, dynamic mechanical analysis, and thermomechanical analysis. Also, tensile test was examined to evaluate the static mechanical properties. With the increasing of modified nanosilica, thermal and static mechanical properties were enhanced, but dynamic mechanical behavior was different from static mechanical behavior because of the different properties of interfacial domain and bulk matrix. The presence of functional groups on the nanosilica surface affected stoichiometry and reduced hard phase formation in bulk polymer. The decrease in glass transition temperature (Tg) confirmed this statement. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

11.
This paper studies the morphology and tensile properties of nanocomposite foams of blends of low‐density polyethylene (LDPE) and poly(ethylene‐co‐vinyl acetate) (EVA). Preparations of LDPE/EVA nanocomposites were conducted in an internal mixer, and then samples were foamed via a batch foaming method. Morphology of the nanocomposite blends and nanocomposite foams was studied by X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. Morphological observations showed that nanoparticle dispersion in the polymeric matrix was affected by the blend ratio in a way such that EVA‐rich samples had a better dispersion of nanoclay than LDPE‐rich ones. In addition, the tensile properties of the nanocomposite foams were related to different variables such as blend ratio, clay content, and foam density. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

12.
Some laser target designs require low‐density organic foam shells to study fusion on the French high‐power laser laser mega joule. Low‐density trimethylolpropane trimethacrylate foam shells composed of C, H, and O, 2 mm diameter, 100‐μm wall thickness, and 250 mg cm?3 density are synthesized by a microencapsulation technique using a droplet generator. These shells have to reach a sphericity higher than 99.9% and a nonconcentricity (NC) lower than 1%. The wall thickness variation is one of the most difficult specifications to meet. An important factor in reducing this defect is the density matching between the three phases of the emulsion at polymerization temperature. The influence of a density mismatch between the internal water phase and the organic phase on the NC of TMPTMA foam shells was studied. The best NC results and yields of shells are obtained with a density gap between the internal water phase and the organic phase of 0.078 g cm?3 at 60°C, with an average NC around 2%. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
UV‐curable nanocomposites were prepared by the in situ photopolymerizaton with nanosilica obtained from sol–gel process. The photoinitiator 2‐hydroxy‐2‐methyl‐1‐phenylpropane‐1‐one (1173) was anchored onto the surface of the nanosilica with or without methacryloxypropyltrimethoxysilane (MAPS) modification. The photopolymerization kinetics was studied by real‐time Fourier transform IR (RTIR), and the microstructure and properties of the nanocomposite were investigated using transmission electron microscopy and UV–visible (UV–vis) transmistance spectra. RTIR analysis indicated that the nanocomposites without MAPS had higher curing rates and final conversion than those with MAPS. The nanocomposites with an uniformal dispersion of nanosilica had high UV–vis transmittance. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In this article, utilizing a nucleophilic substitution reaction between epoxy group in polypropylene‐graft‐glycidyl methacrylate (PP‐g‐GMA) and carboxyl groups in oxidized carbon nanotubes (O‐CNTs), PP‐g‐CNT was fabricated for reinforcing the interfacial adhesion between CNTs and polypropylene (PP) matrix, favoring the enhancement of melt strength and elastic modulus, i.e., enhancing the foaming ability of PP composites. Cellular structure and thermo‐mechanical properties of PP foams were characterized by scanning electron microscopy and dynamic mechanical analysis, respectively. The average cell diameter of PP foams decreased from 289.2 (PP‐g‐GMA) to 96.7 μm (PP‐g‐CNT foams with 2.0 wt % O‐CNT) and the distribution of cell size also became more uniform. The storage modulus of PP‐g‐CNT foams increased by nearly 62.5% at ?40°C, compared with that of PP‐g‐GMA foams. This work also provided a new procedure for improving the foam ability and thermo‐mechanical property of PP composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 961‐968, 2013  相似文献   

16.
In this work, a noncovalent method was used to functionalize and thereby disperse single‐walled carbon nanotubes (SWCNTs) in dimethylformamide with poly[methyl methacrylate‐co‐(fluorescein O‐acrylate)] as a surfactant, and then the resultant poly(methyl methacrylate) (PMMA)‐based nanocomposites were fabricated via solution casting. The dispersion level of carbon nanotubes in the solvent was investigated by means of scanning electron microscopy and atomic force microscopy. The results showed that carbon nanotubes were well wrapped by the surfactant, and small carbon nanotube bundles several nanometers or less in diameter and several micrometers in length were obtained. Both scanning electron microscopy and transmission electron microscopy confirmed the uniform dispersion of SWCNTs in the PMMA matrix. The mechanical properties of the composites were determined with a universal tension tester. The PMMA composite containing 2 wt % SWCNTs showed improved tensile properties versus neat PMMA, showing 56 and 30% enhancements of the tensile modulus and tensile stress, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A high‐performance polymethacrylimide (PMI) foam was prepared from the reactive monomers of acrylonitrile (AN) and methacrylic acid (MAA) via ultrasonic combined with thermal initiation radical bulk copolymerization and free heat foaming. The reaction progress of cyano and carboxyl groups were tracked by Fourier transform infrared (FTIR) spectroscopy and X‐ray Photoelectron Spectroscopy, and the results indicated that the imide groups were formed and cyano groups gradually decreased during foaming and thermal treatment. The cell morphologies of the PMI foams were characterized by scanning electron microscopy, and the results showed the PMI foams were consisted of the honeycomb structure. The thermostability of the prepared PMI foam was evaluated by thermogravimetric analysis (TGA), and the results revealed that the PMI foam possessed excellent thermal stability and char forming capability. The mechanical properties of PMI foams were measured by tensile, flexural, and compressive strength, and the responding values for the PMI foams with the density of 32.30 kg m?3 were 0.71, 0.86, and 1.49 MPa, respectively, which demonstrated the obtained PMI foams presented superior mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44959.  相似文献   

18.
Three novel spiropyran (SP) dyes containing quaternary ammonium salt or cinnamoyl moiety were synthesized and their photosensitive properties as photoinitiator were characterized by UV–vis spectroscopy. The intramolecular electron transfer of SP dyes containing quaternary ammonium salt was much faster and can initiate the photopolymerization under UV irradiation though the photochromic properties than those of SPs containing cinnamoyl group. A photoinitiation system containing SPs and the hexaarylbisimidazoles was studies, and the initiation properties were tested by monitoring the conversion rate of double‐bond at 810 and 1640 cm?1 with ‐time infrared spectroscopy. It was found that the system containing our SP derivatives exhibited much higher initiating efficiency than ever reported SP dyes in the photopolymerization of 2‐phenoxyethylacrylate/N‐vinylcarbazole. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Poly(propylene oxide) (PPO)‐grafted nanosilica (NS)/polyurethane foam (PUF) composites were synthesized by a ring‐opening polymerization catalytic process and reaction‐molding technology. The raw NS and PPO–NS were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. Scanning electron microscopy, dynamic mechanical analysis, and compressive strength tests were used to compare the morphology and thermal and mechanical properties of the PPO–NS/PUF and raw NS/PUF composites with a series of filler contents. The PPO–NS/PUF composites generally exhibited better morphology, thermal and mechanical properties than raw NS/PUF composites. Moreover, the PPO–NS/PUF composites with lower contents (0.5, 1 php) of filler showed even higher mechanical reinforcement than that with higher contents (1.5, 2 php) of filler, which was caused by the interaction between additives and PUF matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42400.  相似文献   

20.
Divinylbenzene (DVB) shells with a density of about 100 mg/cc were produced using a dual‐thermal initiator system. New high‐gain designs for direct‐drive ignition at the National Ignition Facility and the OMEGA laser facility at the Laboratory for Laser Energetics require low‐density foam shells such as these. Previous research using a single initiator system produced fragile DVB shells that cracked or imploded during the fabrication process. The dual‐initiator DVB system used in the present study enabled the shells to be robust enough to produce a high yield of intact shells. The two thermal initiators used were azobisisobutyronitrile (AIBN) and another azo‐type initiator, V‐70. The DVB shells were 800–3500 μm in diameter, with shell wall thickness 7%–10% of the diameter. Because the foam shells were porous, a full‐density permeation barrier of poly(vinyl phenol) was developed and deposited on the shells using two techniques to enable the shells to retain gas. The initial results show that the permeation barrier was pinhole free and could hold the gas in a gas‐filled shell. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2523–2529, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号