共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanum histidine [La(His)2·(NO3)·2H2O or La(His)2] was synthesized via the reaction of histidine and lanthanum nitrate, and it was investigated as a stabilizer for poly(vinyl chloride) (PVC). The results show that La(His)2 exhibited a stabilizing effect on PVC as a long‐term stabilizer because it prolonged the stability time of PVC to 76 min, which was about 24 times longer than the stability time of the pure PVC. The stabilizing effect of La(His)2 as a costabilizer with pentaerythritol (Pe) and zinc stearate (ZnSt2) was also studied. The results show that the use of La(His)2 with Pe or Pe/ZnSt2 improved the stability time of PVC. La(His)2/Pe/ZnSt2 provided PVC with a good initial color and long‐term stability, and when it was prepared at mass ratios of 0.8:2.4:0.8 and 1.6:1.6:0.8, the stability times of PVC were improved to 86 and 88 min, respectively. As a nontoxic stabilizer, La(His)2/Pe/ZnSt2 has the potential to replace the toxic stabilizers widely used in PVC manufacturing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42878. 相似文献
2.
Zinc–mannitol alkoxide (Zn–Man) was synthesized through alcohol exchange reaction, and investigated by means of Fourier transform infrared spectroscopy and elemental analysis. The thermal stability of Zn–Man for rigid poly(vinyl chloride) (PVC) was evaluated by Congo red testing, conductivity measurements, thermal aging testing, thermogravimetric analysis (TGA), and ultraviolet–visible (UV–vis) spectroscopy test. The experimental results demonstrate that the addition of Zn–Man not only apparently prolonged the static thermal stability time to approximately 96.5 min but also evidently improved the initial color of PVC. More importantly, the color of the PVC sheets stabilized with Zn–Man did not change to black within 180 min; this showed that no zinc‐burning phenomenon occurred. In addition, the results of TGA reveal that Zn–Man raised the initial degradation temperature of PVC to about 273.4°C. UV–vis testing indicated that the presence of Zn–Man decreased the content and shortened the length of the conjugated double bonds of PVC. The possible thermal stability mechanism is discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42038. 相似文献
3.
Parvane Sokhandani Ali Akbar Babaluo Mostafa Rezaei Mehdi Shahrezaei Amin Hasanzadeh Shadi Ghaebi Mehmandoust Reza Mehdizadeh 《应用聚合物科学杂志》2013,129(6):3265-3272
In this study, nanocomposites of poly(vinyl chloride) (PVC), using the synthesized titanium dioxide (TiO2) nanorods and commercial nanopowder of titanium dioxide (Degussa P25) were produced by melt blending. The presence of TiO2 nanorods in PVC matrix led to an improvement in mechanical properties of PVC nanocomposites in comparison with unfilled PVC. The photocatalytic degradation behavior of PVC nanocomposites were investigated by measuring their structural change evaluations, surface tension, and mechanical properties before and after UV exposure for 500 h. It was found that mechanical and physical properties of PVC nanocomposites are not reduced significantly after UV exposure in the presence of TiO2 nanorods in comparison with the presence of TiO2 nanoparticles, which can be due to the amorphous structure of the synthesized nanorods. Therefore, it can be concluded that TiO2 nanorods led to an improvement in photostability and mechanical properties of PVC nanocomposites. The interfacial adhesion between TiO2 nanorods and PVC matrix was also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
4.
The rheological behavior and thermal properties of a poly(butyl acrylate‐co‐2‐ethylhexyl acrylate) [P(BA‐EHA)]‐grafted vinyl chloride (VC) composite resin [P(BA‐EHA)/poly(vinyl chloride) (PVC)] and its materials were investigated. The rheological behavior, thermal stability, and Vicat softening temperature (VST) of P(BA‐EHA)/PVC were measured with capillary rheometry, thermal analysis, and VST testing, respectively. The effects of the P(BA‐EHA) content and the polymerization temperature of grafted VC on the rheological behavior of the composite resin were examined. The weight loss of the composite resin and its extracted remainder via heating were analyzed. The influence of the content and crosslinking degree of P(BA‐EHA) and the polymerization temperature of the grafted VC on VST of the materials was determined. The results indicated the pseudoplastic‐flow nature of the composite resin. The flow property of the modified PVC resin was improved because of the incorporation of the acrylate polymer. The molecular weight of PVC greatly influenced the flow behavior and VST of the composite resin and its materials. The flowability of the composite resin markedly increased, and the VST of its materials decreased as the polymerization temperature of the grafted VC increased. The initial degradation temperature of the composite resin increased as the P(BA‐EHA) content increased. The VST of the samples was enhanced a little as the content of the crosslinking agent increased in P(BA‐EHA). As expected, the composite resin, with good impact resistance, had better heating stability and flowability than pure PVC, whereas the VST of the material decreased little with increasing P(BA‐EHA) content. Therefore, P(BA‐EHA)/PVC resins prepared by seeded emulsion polymerization have excellent potential for widespread applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 419–426, 2005 相似文献
5.
利用热失重一红外光谱联机(TG-FTIR)分析技术研究了PVC/CaCO3共混物在氮气气氛下、30-900℃范围内的热降解行为。结果表明:PVC共混物的热降解过程可分为3个阶段,分别在170-380℃,380-570℃和570-758℃范围内。其中,第一阶段主要为PVC脱HCl反应阶段,热降解产物主要为HCl:第二阶段主要为共轭多烯结构的裂解和环化,产物为低烃类化合物、苯及其衍生物;第三阶段为碳酸钙的分解反应。产物为CO2。研究了几种多元醇化合物对PVC的热稳定作用,发现双季戊四醇与硬脂酸钙、硬脂酸锌之间的协同作用最好,其添加量愈多,共混物的稳定性愈好。 相似文献
6.
Fiaz S. Mohammed Mark Conley Steven R. Saunders Jackson Switzer Rani Jha Jeffrey M. Cogen Bharat I. Chaudhary Pamela Pollet Charles A. Eckert Charles L. Liotta 《应用聚合物科学杂志》2015,132(13)
Calcium and zinc salts of epoxidized linolenic acid were synthesized and used as multifunctional additives, to minimize or prevent the reaction of epoxidized soybean oil (ESO) with liberated hydrochloric acid (HCl) during the thermal degradation of poly(vinyl chloride) (PVC) in particular. These metal epoxy salts were incorporated as thermal stabilizers for both diisodecyl phthalate and ESO–plasticized PVC blends that underwent thermal degradation studies at 170°C. The overall performance of these metal epoxy salts was examined by thermal gravimetric analysis and visual color retention of the PVC blends. The weight loss profiles of the metal salt stabilized PVC were comparable to those of blends containing metal stearates. There were, however, vast improvements in color retention of the plasticized PVC using these novel additives. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41736. 相似文献
7.
Hydrocalumite as a new‐type of thermal stabilizer used in poly(vinyl chloride) resin had been well prepared by using precipitation transformation method. The as‐prepared hydrocalumite was then modified by sodium stearate in different condition including temperature, stirring time, and the amount of sodium stearate. Scanning electron microscopy tests demonstrate that hydrocalumite had been well modified. Illustrated by activation grade, the static oven heat aging experiments and the rate of thermal weight loss, it turns out that the best modification condition is when the addition of sodium stearate is 6% of hydrocalumite (wt), the reacting temperature is 90 °C, and the stirring time is 100 min. Static thermal aging test shows that the aging time got improved at least 30 min under the high temperature of 190 °C, and the time when Congo red test paper began to turn blue for modified hydrocalumite is 20 min longer than that of unmodified hydrocalumite. All results turn out to be that the hydrocalumite modified by sodium stearate in such condition had good compatibility with poly(vinyl chloride) and presented better thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45758. 相似文献
8.
抑烟剂对聚氯乙烯热分解特性的影响 总被引:5,自引:0,他引:5
采用热分析、实时傅立叶变换红外光谱等手段,研究了几种常用的抑烟剂(钼化合物和铁化合物)对聚氯乙烯(PVC)热分解特性和热氧化降解特性的影响。热失重的实验结果表明,添加抑烟剂的PVC分解后的残渣量与不含抑烟剂的PVC相比,都有所提高,尤其是含有钼酸铵、氧化钼或Fe2O3的PVC复合物。实时FTIR表明抑烟剂改变TPVC热氧化降解历程,并对C-H和C-Cl键的分解产生较大的影响。 相似文献
9.
The flame retardant and smoke suppressant properties of semirigid PVC treated with calcium carbonate (CaCO3), tin oxide (SnO2), the mixture of CaCO3/SnO2 and SnO2‐coated CaCO3 have been studied through the limiting oxygen index, char yield, and smoke density rating (SDR) methods. The thermal degradation in air of the treated semirigid PVC was studied by thermogravimetry (TG) and differential thermal analysis (DTA) from ambient temperature to 1073 K. The morphologies of the additives and the char formation were studied through SEM. The mechanical property was also studied. The results showed that the semirigid PVC treated with SnO2‐coated CaCO3 has a higher limiting oxygen index and char yield, lower SDR and MSDR, a more compact structure of char formation than the semirigid PVC without flame retardant and the semirigid PVC with the equivalent CaCO3, or SnO2, or the mixture of CaCO3/SnO2, a similar tensile property and greatly improved impact strength compared with that of the semirigid PVC without flame retardant. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 731–738, 2006 相似文献
10.
The effect of vibromilling or jet milling on gelation and mechanical properties of poly(vinyl chloride) (PVC) was studied through SEM, FTIR, DSC, and mechanical properties tests. The experimental results show that the size of the grain and apparent density of PVC are decreased. The grains become much more loosely aggregated and the crystallinity of PVC is decreased during milling. The extensional fracture of degraded PVC is obviously different from that of undegraded PVC, the tensile strength and degree of gelation of degraded PVC are increased as compared with undegraded PVC. The mechanical properties of PVC are improved quite a lot after blending it with a small amount of mechanochemically degraded PVC. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2273–2281, 1997 相似文献
11.
This article reports on the study of the thermal aging of poly(vinyl chloride) (PVC) used in medium‐ and high‐voltage cables. It is shown that the thermal aging leads to the degradation of the material and to the modification of its electrical properties. The degradation is all the more important and faster as the temperature is high. This degradation is attributed to a progressive evaporation of the plasticizer at the beginning of aging and to a weight loss of stabilizer followed by a change in the color of polymer and a release of hydrochloric acid at more advanced stages of aging. It also results in a crosslinking of the material and a shrinking of samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4728–4733, 2006 相似文献
12.
Blends were prepared of poly(vinyl chloride) (PVC) with four different plasticizers; esters of aconitic, citric, and phthalic acids; and other ingredients used in commercial flexible PVC products. The thermal and mechanical properties of the fresh products and of the products after 6 months of aging were measured. Young's modulus of the PVC blends was reduced about 10‐fold by an increase in the plasticizer level from 15 to 30 phr from the semirigid to the flexible range according to the ASTM classification, but a 40‐phr level was required for PVC to retain its flexibility beyond 6 months. At the 40‐phr level, tributyl aconitate performed better than diisononyl phthalate (DINP) or tributyl citrate, in terms of lowering Young's modulus, both in the fresh materials and those aged for 6 months. The effects of the four plasticizers on the glass‐transition temperature (Tg) were similar, with Tg close to ambient temperature at the 30‐ and 40‐phr levels in freshly prepared samples and at 40–60°C in those aged for 6 months. The thermal stability of the PVC plasticized with DINP was superior among the group. Overall, tributyl aconitate appeared to be a good candidate for use in consumer products where the alleged toxicity of DINP may be an issue. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1366–1373, 2006 相似文献
13.
A novel rigid poly(vinyl chloride) (PVC)/acrylonitrile–styrene–acrylate (ASA) copolymer blend with good ultraviolet (UV) irradiation resistance and toughness was reported. ASA with good weatherability and toughness was mixed with PVC by conical twin‐screw extruder to improve the UV irradiation resistance and toughness of PVC. The blends were characterized using Fourier‐transform infrared spectra, dynamic mechanical analysis, and scanning electron microscope. Notch Charpy impact test was used to characterize the UV radiation induced changes in toughness. The results showed that ASA was able to toughen PVC with simultaneously improving heat resistance, thermal stabilization, and protecting PVC from irradiation photochemical degradation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2143–2151, 2013 相似文献
14.
The Mg‐Al oxide precursor prepared by the calcination of Mg‐Al‐carbonated layered double hydroxide (LDH) at 500 K for 4 h is used as the host material, 2‐hydroxy‐4‐methoxybenzophenone‐5‐sulfonic acid (BP) is used as the guest material, BP‐intercalated LDH (LDH‐BP) is prepared by ion‐exchange method. The structure of LDH‐BP is characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetry and differential thermal analysis (TG‐DTA). The thermal stability of PVC/BP, PVC/LDH, PVC/LDH‐BP composites, as well as pure PVC is investigated by conventional Congo Red test and dynamic thermal stability analysis in both the open and closed processing environments. According to XRD and FTIR, BP anions have been intercalated into interlayer galleries of LDH. TG‐DTA results show that the layer‐anionic interaction results in the improvement of the thermal stability of BP. Congo Red tests indicate that the addition of BP catalyzes the thermal degradation of PVC. A little amount of LDH (such as 1 phr) makes PVC more stable, but excessive addition accelerates the thermal degradation of PVC. The addition of LDH‐BP markedly improves the static thermal stability of PVC. The results of dynamic thermal stability tests in both the open and closed processing environments are consistent with that of Congo Red tests. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
15.
Emulsion‐polymerized copolymers of methyl methacrylate and N‐cyclohexylmaleimide were synthesized and used for blending with poly(vinyl chloride) (PVC) to improve the heat resistance of PVC. The thermal stabilities of the blends with different copolymer contents were characterized by thermogravimetric analysis, torsional braid analysis, and the Vicat softening temperature. The mechanical properties and rheological behavior of the blends were also determined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 201–205, 2003 相似文献
16.
Jie Chen Xiaoying Li Yigang Wang Jinrui Huang Ke Li Xiaoan Nie Jianchun Jiang 《应用聚合物科学杂志》2016,133(34)
A novel plasticizer epoxidized dimeric acid methyl ester (EDAMe) based on rubber seed oil was synthesized. Chemical structure of EDAMe was characterized by Fourier transform infrared (FTIR) and gel permeation chromatography (GPC). Effects of EDAMe as secondary plasticizer and its substitution of commercial plasticizer dioctyl terephthalate (DOTP) in soft poly(vinyl chloride) (PVC) films were studied. The thermal properties, mechanical properties and migration stabilities of PVC films were explored with DMA, TG, TG–FTIR, dynamic thermal stability analysis, tensile and migration tests. The results indicated that the epoxidized rubber seed oil based ester has significantly higher thermal stability than DOTP. When DOTP was substituted with 20% (m/m) EDAMe, the results of initial decomposition temperature (Ti), 10% and 50% mass loss temperatures (T10 and T50), and the first maximum weight‐loss temperature rate (TP1) reached 267.2 °C, 263.5 °C, 307.3 °C and 298.9 °C, respectively. Furthermore, flexibility of the obtained PVC films enhanced significantly with the adding of EDAMe. The migration stabilities of EDAMe was also investigated and showed good migration resistance. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43668. 相似文献
17.
Effects of nanoscale dispersed layered double hydroxides (LDHs) on thermal stability of poly(vinyl chloride) (PVC) in thermal and thermooxidative degradation processes are investigated by dynamic and isothermal thermogravimetric analysis (TGA), discoloration test, fourier transform infrared (FTIR), and ultraviolet‐visible (UV‐vis) spectroscopic techniques. During both stages of thermal degradation, the degradation temperatures, including onset degradation temperature and temperature of the maximum degradation rate, increase, and the final residue yield of the PVC/LDH nanocomposites reaches 14.7 wt %, more than double that for neat PVC. The thermooxidative degradation process is more complex. During the first two stages, the presence of nanoscale dispersed LDH particles enhances the thermal stability, whereas in the last stage accelerates the thermal degradation possibly due to the accumulation of heat released. Additionally, the studies of the isothermal thermooxidative degradation process by FTIR and UV‐vis spectra indicate that both polyene backbone formation and some carbonyl groups are simultaneously developed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
18.
In this study, a new type of mixed calcium (Ca) and zinc (Zn) thermal stabilizers was prepared and evaluated for poly(vinyl chloride) (PVC) thermal stabilization. The mixed stabilizers were based on the Ca and Zn salts of polycarboxylic acid derived from eleostearic acid—the dominant fatty acid of tung oil fatty acids. Eleostearic acid was converted to a 21‐carbon diacid (C21DA) and a 22‐carbon triacid (C22TA), respectively, which were subsequently turned into calcium (Ca) and zinc (Zn) salts. Thermal stability of PVC compounds was examined by thermogravimetric analysis (TGA), discoloration test, Congo red test, and thermal decomposition kinetics. In comparison, commercial mixed Ca/Zn thermal stabilizers composed of stearate salts (CaSt2/ZnSt2), were employed as controls. Because the salts of C21DA, C22TA and stearate have different metal contents, thermal stabilization effects were compared on the basis of both equal salt weight and equal metal ion content. It was noted that under both cases the long‐term thermal stability of the PVC samples followed the order of C21DA‐Ca/C21DA‐Zn > C22TA‐Ca/C22TA‐Zn > CaSt2/ZnSt2. The results suggest that the mixed Ca/Zn salts based on tung oil‐derived polycarboxylic acids have higher metal ion contents and cycloaliphatic structures and can effectively improve the thermal stability of PVC. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44679. 相似文献
19.
Elsayeda F. Salem;Amr M. N. Abido;I. A. Ali; 《应用聚合物科学杂志》2024,141(36):e55903
This work uses pure polyvinyl chloride (PVC) with magnesium oxide (MgO) nanoparticles to enhance PVC's optical and shielding properties. The distribution of MgO nanoparticles in the PVC polymer was shown using a scanning electronic microscope, x-ray diffraction, and Fourier transform infrared. The prepared samples' optical parameters and thermal analysis are investigated using ultraviolet (UV) spectroscopy and thermogravimetric analysis, respectively. The shielding characteristics parameters for the prepared samples were experimentally tested using a Cs-137 point source with an energy of 0.662 MeV, and the outcomes were contrasted with what the XCOM software had calculated. Results indicated that optical constants were significantly affected by the addition of MgO wt% concentration. The linear attenuation coefficient was directly proportional to the weight concentration of MgO nanoparticle filler in the PVC matrix, and the ability to absorb UV increased. Adding MgO nanoparticle concentrations improved the PVC composite's radiation shielding behavior. It concluded that the PVC/MgO nanoparticle-prepared samples are suitable for packaging for industrial applications and apron shielding for medical applications. 相似文献
20.
Shu‐Ting Liu Ping‐Ping Zhang Kang‐Kang Yan Yuan‐Hu Zhang Ying Ye Xue‐Gang Chen 《应用聚合物科学杂志》2015,132(39)
In this study, a novel ‐intercalated layered double hydroxide (Sb‐LDH) was prepared by simultaneous recovering of LDH structures and intercalation of into LDH layers. The prepared Sb‐LDH composites remain the hydrotalcite structure with layered geometry and show higher thermal property than that of LDH. When applied to poly(vinyl chloride) (PVC) composites, Sb‐LDH showed limited thermal stability for PVC at the early stage of thermal and thermooxidative degradation processes. However, Sb‐LDH could retard the thermal cracking of the carbonaceous conjugated polyene of PVC which may hinder further degradation, and the moderate amount of Sb‐LDH (1, 2, and 5 wt %) in PVC resin can retard the process of decarbonation and enhance char formation. Sb‐LDH also promoted the transparency of PVC but darkened the color. With the advantages of transparency promotion, high temperature resistance, and long‐term stability, the prepared Sb‐LDH is a potential thermal stabilizer for PVC resins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42524. 相似文献