首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nano‐calcium carbonate (nano‐CaCO3) was used in this article to fill acrylonitrile–butadiene–styrene (ABS)/poly(methyl methacrylate) (PMMA), which is often used in rapid heat cycle molding process (RHCM). To achieve better adhesion between nano‐CaCO3 and ABS/PMMA, nano‐CaCO3 particles were modified by using titanate coupling agent, aluminum–titanium compound coupling agent, and stearic acid. Dry and solution methods were both utilized in the surface modification process. ABS/PMMA/nano‐CaCO3 composites were prepared in a corotating twin screw extruder. Influence of surface modifiers and surface modification methods on mechanical and flow properties of composites was analyzed. The results showed that collaborative use of aluminum–titanium compound coupling agent and stearic acid for nano‐CaCO3 surface modification is optimal in ABS/PMMA/nano‐CaCO3 composites. Coupling agent can increase the melt flow index (MFI) and tensile yield strength of ABS/PMMA/nano‐CaCO3 composites. The Izod impact strength of composites increases with the addition of titanate coupling agent up to 1 wt %, thereafter the Izod impact strength shows a decrease. The interfacial adhesion between nano‐CaCO3 and ABS/PMMA is stronger by using solution method. But the dispersion uniformity of nano‐CaCO3 modified by solution method is worse. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Acrylonitrile‐butadiene‐styrene (ABS)/poly(methyl meth‐acrylate) (PMMA)/nano‐calcium carbonate (nano‐CaCO3) composites were prepared in a corotating twin screw extruder. Four kinds of nano‐CaCO3 particles with different diameters and surface treatment were used in this study. The properties of the composites were analyzed by tensile tests, Izod impact tests, melt flow index (MFI) tests, and field emission scanning electron microscopy (FESEM). This article is focused on the effect of nano‐CaCO3 particles' size and surface treatment on various properties of ABS/PMMA/nano‐CaCO3 composites. The results show that the MFI of all the composites reaches a maximum value when the content of nano‐CaCO3 is 4 wt%. In comparison with untreated nano‐CaCO3 composites, the MFI of stearic acid treated nano‐CaCO3 composites is higher and more sensitive to temperature. The tensile yield strength decreases slightly with the increase of nano‐CaCO3 content. However, the size and surface treatment of nano‐CaCO3 particles have little influence on the tensile yield strength of composites. In contrast, all of nano‐CaCO3 particles decrease Izod impact strength significantly. Stearic acid treated nano‐CaCO3 composites have superior Izod impact strength to untreated nano‐CaCO3 composites with the same nano‐CaCO3 content. Furthermore, the Izod impact strength of 100 nm nano‐CaCO3 composites is higher than that of 25 nm nano‐CaCO3 composites. POLYM. COMPOS., 31:1593–1602, 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Rapid heat cycle molding (RHCM) is a newly developed injection molding technology in recent years. In this article, a new electric heating RHCM mold is developed for rapid heating and cooling of the cavity surface. A data acquisition system is constructed to evaluate thermal response of the cavity surfaces of the electric heating RHCM mold. Thermal cycling experiments are implemented to investigate cavity surface temperature responses with different heating time and cooling time. According to the experimental results, a mathematical model is developed by regression analysis to predict the highest temperature and the lowest temperature of the cavity surface during thermal cycling of the electric heating RHCM mold. The verification experiments show that the proposed model is very effective for accurate control of the cavity surface temperature. For a more comprehensive analysis of the thermal response and temperature distribution of the cavity surfaces, the numerical‐method‐based finite element analysis (FEA) is used to simulate thermal response of the electric heating RHCM mold during thermal cycling process. The simulated cavity surface temperature response shows a good agreement with the experimental results. Based on simulations, the influence of the power density of the cartridge heaters and the temperature of the cooling water on thermal response of the cavity surface is obtained. Finally, the effect of RHCM process on surface appearance and tensile strength of the part is studied. The results show that the high‐cavity surface temperature during filling stage in RHCM can significantly improve the surface appearance by greatly improving the surface gloss and completely eliminating the weld line and jetting mark. RHCM process can also eliminate the exposing fibers on the part surface for the fiber‐reinforced plastics. For the high‐gloss acrylonitrile butadiene styrene/polymethyl methacrylate (ABS/PMMA) alloy, RHCM process reduces the tensile strength of the part either with or without weld mark. For the fiber‐reinforced plastics of polypropylene (PP) + 20% glass fiber, RHCM process reduces the tensile strength of the part without weld mark but slightly increases the tensile strength of the part with weld mark. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
CaCO3/acrylonitrile‐butadiene‐styrene (ABS) and CaCO3/ethylene‐vinyl acetate copolymer (EVA)/ABS nanocomposites were prepared by melting‐blend with a single‐screw extruder. Mechanical properties of the nanocomposites and the dispersion state of CaCO3 particles in ABS matrix were investigated. The results showed that in CaCO3/EVA/ABS nanocomposites, CaCO3 nanoparticles could increase flexural modulus of the composites and maintain or increase their impact strength for a certain nano‐CaCO3 loading range. The tensile strength of the nanocomposites, however, was appreciably decreased by adding CaCO3 nanoparticles. The microstructure of neat ABS, CaCO3/ABS nanocomposites, and CaCO3/EVA/ABS nanocomposites was observed by scanning electron microscopy. It can be found that CaCO3 nanoparticles were well‐dispersed in ABS matrix at nanoscale. The morphology of the fracture surfaces of the nanocomposites revealed that when CaCO3/EVA/ABS nanocomposites were exposed to external force, nano‐CaCO3 particles initiated and terminated crazing (silver streak), which can absorb more impact energy than neat ABS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The effect of chlorinated polyethylene (CPE) content and test temperature on the notched Izod impact strength and brittle‐ductile transition behaviors for polyvinylchloride (PVC)/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites is studied. The CPE content and the test temperature regions are from 0–50 phr and 243–363 K, respectively. It is found that the optimum nano‐CaCO3 content is 15 phr for PVC/CPE/nano‐CaCO3 ternary composites. For both PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites, the impact strength is improved remarkably when the CPE content or test temperature is higher than the critical value, that is, brittle‐ductile transition content (CBD) or brittle‐ductile transition temperature (TBD). The TBD is closely related to the CPE content, the higher the CPE content, the lower the TBD. The temperature dependence of impact strength for PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites can be well simulated with a logistic fitting model, and the simulation results can be illustrated with the percolation model proposed by Wu and Jiang. DMA results reveal that both PVC and CPE can affect the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. When the CPE content is enough (20 phr), the CPE is more important than PVC for determining the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. Scanning electron microscopy (SEM) observations reveal that the impact fractured mechanism can change from brittle to ductile with increasing test temperature for these PVC systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
BACKGROUD: Melt vibration technology was used to prepare injection samples of polypropylene (PP)/nano‐CaCO3 blends. It is well known that nano‐CaCO3 particles are easy to agglomerate owing to their large surface energy. Improving the distribution of nano‐CaCO3 particles in PP/nano‐CaCO3 blends is very important for enhancing the mechanical properties. In this work, low‐frequency vibration was imposed on the process of injection molding of PP/nano‐CaCO3 blends. The aim of importing a vibration field was to change the crystal structure of PP as we studied previously and improve the distribution of nano‐CaCO3 particles. Furthermore, the mechanical properties were improved. RESULTS: Through melt vibration, the mechanical properties of PP/nano‐CaCO3 samples were improved significantly. Compared with conventional injection molding, the enhancement of the tensile strength and impact strength of the samples molded by vibration injection molding was 17.68 and 175.96%, respectively. According to scanning electron microscopy, wide‐angle X‐ray diffraction and differential scanning calorimetry measurements, it was found that a much better dispersion of nano‐CaCO3 in samples was achieved by vibration injection molding. Moreover, the crystal structure of PP in PP/CaCO3 vibration samples changed. The γ crystal form was achieved at the shear layer of vibration samples. Moreover, the degree of crystallinity of PP in vibration samples increased 6% compared with conventional samples. CONCLUSION: Concerning the microstructure, melt vibration could effectively change the crystal structure and increase the degree of crystallinity of PP besides improving the distribution of nano‐CaCO3 particles. Concerning the macrostructure, melt vibration could enhance the mechanical properties. The improvement of mechanical properties of PP/nano‐CaCO3 blends prepared by low‐frequency vibration injection molding should be attributed to the even distribution of nano‐CaCO3 particles and the formation of γ‐PP and the increase of the degree of cystallinity. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
The effects of particle size and surface treatment of CaCO3 particles on the microstructure and mechanical properties of poly(vinyl chloride) (PVC) composites filled with CaCO3 particles via a melt blending method were studied by SEM, an AG‐2000 universal material testing machine and an XJU‐2.75 Izod impact strength machine. The tensile and impact strengths of CaCO3/PVC greatly increased with decreasing CaCO3 particle size, which was attributed to increased interfacial contact area and enhanced interfacial adhesion between CaCO3 particles and PVC matrix. Titanate‐treated nano‐CaCO3/PVC composites had superior tensile and impact strengths to untreated or sodium‐stearate‐treated CaCO3/PVC composites. The impact strength of titanate‐treated nano‐CaCO3/PVC composites was 26.3 ± 1.1 kJ m−2, more than three times that of pure PVC materials. The interfacial adhesion between CaCO3 particles and PVC matrix was characterized by the interfacial interaction parameter B and the debonding angle θ, both of which were calculated from the tensile strength of CaCO3/PVC composites. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
T ernary composite of nano‐CaCO3/ethylene‐propylene‐diene terpolymer (EPDM)/polypropylene (PP) with high content of nano‐CaCO3 was prepared by two step compounding route, in which EPDM and nano‐CaCO3 were mixed first, and then melt compounding with PP matrix. The influence of mixing time during the second compounding on distribution of nano‐CaCO3 particles and the impact strength of the ternary composite have been investigated. It was found that the Izod impact strength of composite decreased with increasing mixing time. The observation of transmission electron microscopy obviously showed that nano‐CaCO3 particles transported from EPDM to PP matrix firstly and then from PP to the vicinity of EPDM dispersed phase with the increase of mixing time. This phenomenon can be well explained by the minimization of the dissipative energy and the Young's equation. The scanning electron microscope images show that lots of nano fibrils exist at the interface between nano‐CaCO3 agglomerates and matrix, which can dissipate lots of energy. The toughening mechanism has been interpreted in terms of three‐stage‐mechanism: stress concentration, void and shear band formation, and induced shear yielding. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Nanocomposites of poly(vinyl chloride) (PVC) and nano‐calcium carbonate (CaCO3) particles were prepared via melt blending, and chlorinated polyethylene (CPE) as an interfacial modifier was also introduced into the nanocomposites through preparing CPE/nano‐CaCO3 master batch. The mechanical properties, morphology, and rheology were studied. A moderate toughening effect was observed for PVC/nano‐CaCO3 binary nanocomposites. The elongation at break and Young's modulus also increased with increasing the nano‐CaCO3 concentration. Transmission electron microscopy (TEM) study demonstrated that the nano‐CaCO3 particles were dispersed in a PVC matrix uniformly, and a few nanoparticles agglomeration was found. The toughening effect of the nano‐CaCO3 particles on PVC could be attributed to the cavitation of the matrix, which consumed tremendous fracture energy. The notched Izod impact strength achieved a significant improvement by incorporating CPE into the nanocomposites, and obtained the high value of 745 J/m. Morphology investigation indicated that the nano‐CaCO3 particles in the PVC matrix was encapsulated with a CPE layer through preparing the CPE/nano‐CaCO3 master batch. The evaluation of rheological properties revealed that the introduction of nano‐CaCO3 particles into PVC resulted in a remarkable increase in the melt viscosity. However, the viscosity decreased with addition of CPE, especially at high shear rates; thus, the processability of the ternary nanocomposites was improved. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2714–2723, 2004  相似文献   

10.
Summary: A new kind of rubber powder with “salami” structure (RPS) was prepared by spray drying the mixture of styrene‐butadiene rubber latex and nano‐CaCO3 slurry. It was found that RPS is an effective toughener with synergistic toughening effect on poly(propylene) (PP). The Izod impact strength of PP/RPS blend is not only higher than that of PP/rubber powder or PP/nano‐CaCO3 blends, but also higher than that of a PP/rubber powder/CaCO3 blend. TEM images show that the microstructure of the PP/RPS blend is an “island‐sea” structure with “salami” structure in RPS, in which nano‐CaCO3 particles are embedded in styrene‐butadiene rubber particles. The relationship between properties and microstructure has been studied by using TEM, SEM, DSC, etc.

  相似文献   


11.
Poly(vinyl chloride) (PVC) composites filled with nano‐ and micro‐CaCO3 particles were prepared via a melt blending method. Transmission electron microscopy images revealed better dispersion of nano‐CaCO3 than micro‐CaCO3 in the PVC matrix. With more than 5 phr (parts per 100 parts of resin) of nano‐CaCO3 content, both impact strength and heat stability were improved. Accelerated weathering tests were performed to investigate UV stability. The impact strength and white index obtained upon weathering exposure of PVC/(80 μm CaCO3) nanocomposites showed a significant improvement upon incorporating nano‐CaCO3. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
In this article, dynamic packing injection molding (DPIM) technology was used to prepare injection samples of Polypropylene‐Calcium Carbonate (PP/CaCO3) nanocomposites. Through DPIM, the mechanical properties of PP/nano‐CaCO3 samples were improved significantly. Compared with conventional injection molding (CIM), the enhancement of the tensile strength and impact strength of the samples molded by DPIM was 39 and 144%, respectively. In addition, the tensile strength and impact strength of the PP/nano‐CaCO3 composites molded by DPIM increase by 21 and 514%, respectively compared with those of pure PP through CIM. According to the SEM, WAXD, DSC measurement, it could be found that a much better dispersion of nano‐CaCO3 in samples was achieved by DPIM. Moreover, γcrystal is found in the shear layer of the DPIM samples. The crystallinity of PP matrix in DPIM sample increases by 22.76% compared with that of conventional sample. The improvement of mechanical properties of PP/nano‐CaCO3 composites prepared by DPIM attributes to the even distribution of nano‐CaCO3 particles and the morphology change of PP matrix under the influence of dynamic shear stress. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
A Brabender torque rheometer equipped with an internal mixer was used to study the influence of compounding method on the properties of (rigid PVC)/(treated and untreated nano‐CaCO3) nanocomposites. Two different methods were studied for the addition of surface treated and untreated nano‐CaCO3 during the melt mixing of rigid PVC. Direct dry mixing of rigid PVC and nano‐CaCO3, and addition of nano‐CaCO3 at the onset of PVC fusion were investigated. Dispersion of treated and untreated nano‐CaCO3 was studied by X‐ray diffraction and scanning electron microscopy. Results showed that using direct dry mixing improved the dispersion of nano‐CaCO3 in the PVC matrix by lowering the fusion time. The mechanical properties of the nanocomposite samples such as impact strength, tensile strength, and elongation at break were improved by using this method. The addition of treated nano‐CaCO3 at the onset of fusion caused a simultaneous decrease in torque. Also, rigid PVC nanocomposites prepared with treated nano‐CaCO3 showed better mechanical properties than those of nanocomposites prepared with the untreated nano‐CaCO3. J. VINYL ADDIT. TECHNOL., 18:153–160, 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
To improve the impact toughness of polypropylene (PP), nano‐CaCO3 was prepared by an in situ synthesis. The surface of the nano‐CaCO3 was modified by KH‐550 silane coupling agent and NDZ‐401 titanium acid ester coupling agent. Nano‐CaCO3/PP composite materials were fabricated through a melt‐blending method and characterized, and their mechanical properties were analyzed. The impact toughness and the tensile strength of the PP were improved significantly by the incorporation of nano‐CaCO3. When the weight fraction of nano‐CaCO3 was 2%, the maximum impact toughness and tensile strength of the PP nanocomposites were 293% and 259%, respectively, of the values for neat PP. Observation of the impact fracture surface of the nanocomposites indicated that the dispersion of nano‐CaCO3 modified by NDZ‐401 coupling agent was more homogeneous than that of nano‐CaCO3 modified by the KH‐550 silane coupling agent. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
The properties and morphology of nano‐calcium carbonate (nano‐CaCO3) modified with the titanate coupling agent isopropyl trioleoyl titanate (IPTT) were characterized by Fourier transform infrared, thermogravimetric analyses, surface tension, and transmission electron microscopy. The results showed that the grafting ratio of IPTT on the surface of nano‐CaCO3 (IPTT‐Ca) increased with IPTT content. IPTT‐Ca/PBA/PMMA (IPTT‐Ca/ACR, PBA/PMMA core‐shell polymer, referred to ACR) latexes were prepared by seeded emulsion polymerization. They were then used to mix with PVC resin. The outer layer (PMMA) enhanced the dispensability of IPTT‐Ca/ACR in the PVC matrix by increasing the interfacial interaction of these composite particles with PVC. The notched impact strengths of the blends were influenced by the weight ratio of IPTT‐Ca to BA/MMA monomers, the weight ratio of BA/MMA. The relationships between the mechanical properties and the core‐shell composite structures were elaborated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Biodegradable polymer foams are attracting extensive attention in both academic and industrial fields. In this study, an emerging biodegradable polymer, poly(propylene carbonate) (PPC), was compounded with nano calcium carbonate (nano‐CaCO3) and foamed via supercritical carbon dioxide for the first time. Four concentrations of nano‐CaCO3, 1, 3, 5, and 10 wt %, were used and the thermal properties of PPC/nano‐CaCO3 composites were investigated. The glass‐transition temperature and thermal decomposition temperature of the PPC/nano‐CaCO3 composites increased with the addition of nano‐CaCO3. The morphologies of the PPC/nano‐CaCO3 composites and the rheological results showed that homogeneous dispersions of nano‐CaCO3 and percolated nano‐CaCO3 networks were achieved at a nano‐CaCO3 content of 3 wt %. Therefore, the finest cell diameter (3.13 μm) and highest cell density (6.02 × 109 cells/cm3) were obtained at the same nano‐CaCO3 content. The cell structure dependences of PPC and PPC with a nano‐CaCO3 content of 3 wt % (PPC‐3) foams on the foaming pressure and temperature were investigated as well. The results suggested that the cell structure of PPC‐3 was more stable at different foaming conditions due to the networks of nano‐CaCO3. Moreover, the change in pressure was more influential on the cell structure than the temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42248.  相似文献   

17.
The article surveyed the fabrication of polystyrene (PS)/nano‐CaCO3 foams with unimodal or bimodal cellular morphology from extrusion foaming using supercritical carbon dioxide (sc‐CO2). In order to discover the factors influenced the cell structure of PS/nano‐CaCO3 foams, the effects of die temperature, die pressure, and nano‐CaCO3 content on cell size, density, and morphology were investigated detailed. The results showed that the nano‐CaCO3 content affected the cell size and morphology of PS/nano‐CaCO3 foams significantly. When the die temperature and pressure was 150°C and 18 MPa, respectively, the foams with 5 wt% nano‐CaCO3 exhibited the unimodal cellular morphology. As the nano‐CaCO3 content increased to 20 wt%, a bimodal cell structure of the foams could be obtained. Moreover, it was found that the bimodal structure correlated more strongly with the pressure drop than the foaming temperature. The article revealed that unimodal or bimodal cellular morphology of PS/nano‐CaCO3 foams could be achieved by changing the extrusion foaming parameters and nano‐CaCO3 content. POLYM. COMPOS., 37:1864–1873, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
To investigate the effect of interfacial interaction on the crystallization and mechanical properties of polypropylene (PP)/nano‐CaCO3 composites, three kinds of compatibilizers [PP grafted with maleic anhydride (PP‐g‐MA), ethylene–octene copolymer grafted with MA (POE‐g‐MA), and ethylene–vinyl acetate copolymer grafted with MA (EVA‐g‐MA)] with the same polar groups (MA) but different backbones were used as compatibilizers to obtain various interfacial interactions among nano‐CaCO3, compatibilizer, and PP. The results indicated that compatibilizers encapsulated nano‐CaCO3 particles, forming a core–shell structure, and two interfaces were obtained in the compatibilized composites: interface between PP and compatibilizer and interface between compatibilizer and nano‐CaCO3 particles. The crystallization and mechanical properties of PP/nano‐CaCO3 composites were dependent on the interfacial interactions of these two interfaces, especially the interfacial interaction between PP and compatibilizer. The good compatibility between PP chain in PP‐g‐MA and PP matrix improved the dispersion of nano‐CaCO3 particles, favored the nucleation effect of nano‐CaCO3, increased the tensile strength and modulus, but reduced the ductility and impact strength of composites. The partial compatibility between POE in POE‐g‐MA and PP matrix had little effect on crystallization and mechanical properties of PP/nano‐CaCO3 composites. The poor compatibility between EVA in EVA‐g‐MA and PP matrix retarded the nucleation effect of nano‐CaCO3, and reduced the tensile strength, modulus, and impact strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The Izod impact strength of two kinds of ternary composites was investigated. One consisted of polypropylene (PP), the triblock copolymer polystyrene‐block‐poly(ethylene butene)‐block‐polystyrene (SEBS), and calcium carbonate (CaCO3) particles, and the other consisted of PP, carboxylated SEBS (C‐SEBS), and CaCO3 particles. The mean size of the CaCO3 particles was about 160 nm. According to scanning electron microscopy observations, the composite with SEBS showed a morphology in which SEBS domains and CaCO3 particles were independently dispersed in the PP matrix. On the other hand, the composite with C‐SEBS showed a morphology in which CaCO3 particles were encapsulated by C‐SEBS; that is, a core–shell structure was formed. The Izod impact strength of the composite with SEBS was higher than that of the composite with C‐SEBS and the PP/SEBS and PP/C‐SEBS binary blends. According to observations of the fractured surface, the stress‐whitened area was larger in the composite with SEBS than in the composite with C‐SEBS and the PP/SEBS and PP/C‐SEBS binary blends. The toughening mechanism of the composite, using nanometer‐sized CaCO3 particles in combination with SEBS, was examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The use of naturally renewable shells of the freshwater channeled applesnail, Pomacea canaliculata, as a filler to replace commercial calcium carbonate (CaCO3) was investigated in this study. Ground P. canaliculata shell particles were converted to nano‐CaCO3 particles by the displacement reaction of calcium chloride in sodium carbonate solution followed by hydrothermal treatment at 100°C for 1 h to synthesize nano‐CaCO3 with particle sizes of 30–100 nm in diameter. The mechanical properties, in terms of the tensile strength, elongation at brake and impact strength, of polyvinyl chloride (PVC) were greatly improved by mixing with nano‐CaCO3 at 5–10 parts per hundred of resin. Additionally, the presence of nano‐CaCO3 at the same levels increased the flame resistance and thermal stability of the PVC composite materials. POLYM. COMPOS., 36:1620–1628, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号