首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary: Glass fabric reinforced hybrid matrix composites of a toughened silicone resin and a vinyl ester resin were fabricated and their properties investigated. The hybrid composites consisted of multi‐layers of fiber reinforced silicone resins and vinyl ester resins. The toughened silicone resin, a crosslinkable phenylsilsesquioxane resin with high thermal and thermal oxidation resistance but relatively low Tg, was chosen to be the outer layers. The vinyl ester resin, with better strength, toughness and a much higher Tg than the toughened silicone resin, was used as the inner layers. A co‐cure process proved to establish a strong interface between the two in a hybrid composite. The hybrid composites had better flammability properties and much lower short term moisture absorption than the vinyl ester composites. The strength and modulus retention of the hybrid composites at elevated temperatures was higher than the composites using any single resin as the matrix. For example, when tested at 150 °C the flexural modulus and strength values of a twelve layer composite, with eight inner vinyl ester resin layers and four silicone outer layers, were almost an order of magnitude higher than the composite using the silicone resin alone, and were significantly higher than the one using vinyl ester resin alone. The room temperature short beam shear strength of the hybrid composites was also higher. DMA revealed that the inter‐diffusion of reactive components between the two resins was probably responsible for this synergistic effect, resulting in an α transition temperature of 182 °C for the hybrid composite, higher than that of either the silicone resin (85 °C) or the vinyl ester resin (162 °C).

  相似文献   


2.
A novel thermal stability and highly transparent silicone resin‐type material was prepared via hydrosilylation of vinyl‐polyhedral oligomeric silsesquioxanes (POSS)‐grafted methylhydrosilicone oil and vinylmethylsilicone oil in the presence of Karstedt catalyst. The morphology, mechanical property, thermal stability, optical transmittance, thermal‐oxidation resistance of the vinyl‐POSS‐reinforced silicone resins were systematically investigated. Scanning electron microscopy showed that the vinyl‐POSS‐reinforced silicone resins had good compatibility with polydimethylsiloxane (PDMS) systems. The mechanical analysis and thermo gravimetric analysis indicated that the mechanical properties and thermal stability increased with increasing quantity of vinyl‐POSS. However, the optical transmittance increased with the increasing amount of vinyl‐POSS rather than decreased. In addition, the incorporation of vinyl‐POSS did not improve the thermal resistance of the PDMS polymers. The product has the potential application for LED packaging. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42187.  相似文献   

3.
A novel high refractive index and highly transparent silicone resin‐type material for the packaging of high‐power light‐emitting diodes (LEDs) is introduced, which was synthesized by hydrosilylation of vinyl end‐capped methylphenyl silicone resin and methylphenyl hydrosilicone oil catalyzed by Karstedt's catalyst. The vinyl end‐capped methylphenyl silicone resins were prepared by hydrolysis?polycondensation method from methylphenyl diethoxysilane (MePhSi(OEt)2), phenyl triethoxysilane (PhSi(OEt)3), and vinyl dimethylethoxy silane (Me2ViSiOEt) in toluene/water mixture catalyzed by cation‐exchange resin. The vinyl end‐capped methylphenyl silicone resins were characterized by 1H‐NMR and Fourier‐transform infrared. The performances of the cured silicone resin‐type materials for LED packaging have been examined in detail. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Silicone–epoxy resins were synthesized through hydrosilylation of 1,2‐epoxy‐4‐vinyl‐cyclohexane with 1,3,5,7‐tetramethycyclotetrasiloxane. The silicone–epoxy resins showed high reactivity in the presence of aluminum complex/silanol compound catalysts. Curing of the resins was effected at extremely low concentrations of the aluminum acetylacetonate/Ph2Si(OH)2 catalyst to give hard materials with optical clarity. For the silicone–epoxy resins containing Si? H bonds, Al(acac)3 alone is effective for the curing. The cured silicone–epoxy resins showed excellent UV resistance. An improvement in the lifetime of UV‐LEDs was achieved using the silicone–epoxy compositions as encapsulant. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3954–3959, 2007  相似文献   

5.
In this study, a fatty acid‐based comonomer is employed as a styrene replacement for the production of triglyceride‐based thermosetting resins. Styrene is a hazardous pollutant and a volatile organic compound. Given their low volatility, fatty acid monomers, such as methacrylated lauric acid (MLA), are attractive alternatives in reducing or eliminating styrene usage. Different triglyceride‐derived cross‐linkers resins were produced for this purpose: acrylated epoxidized soybean oil (AESO), maleinated AESO (MAESO), maleinated soybean oil monoglyceride (SOMG/MA) and maleinated castor oil monoglyceride (COMG/MA). The mechanical properties of the bio‐based polymers and the viscosities of bio‐based resins were analyzed. The viscosities of the resins using MLA were higher than that of resins with styrene. Decreasing the content of MLA increased the glass transition temperature (Tg). In fact, the Tg of bio‐based resin/MLA polymers were on the order of 60°C, which was significantly lower than the bio‐based resin/styrene polymers. Ternary blends of SOMG/MA and COMG/MA with MLA and styrene improved the mechanical properties and reduced the resin viscosity to acceptable values. Lastly, butyrated kraft lignin was incorporated into the bio‐based resins, ultimately leading to improved mechanical properties of this thermoset but with unacceptable increases in viscosity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The effects of coupling agents, silicone oil, and three types of polymeric modifiers on the mechanical properties of linear low density polyethylene (LLDPE) composites highly filled with aluminium hydroxide [Al(OH)3] were studied. Polymeric modifiers that contain polar groups, such as silane‐grafted polyethylene (Si‐g‐PE) and acrylic‐acid‐grafted ethylene‐vinyl acetate copolymer (AA‐g‐EVA), improve the mechanical properties dramatically, while nonpolar modifiers improve them to some extent. When Al(OH)3 was treated using a titanate coupling agent, the silicone oil increased the impact strength and elongation at break of the LLDPE/Al(OH)3 composites. Introduction of a polymeric modifier containing polar groups destroys the beneficial effects of silicone oil on film mechanical properties, while the introduction of a nonpolar elastomeric polymeric modifier retains the high impact strength and elongation at break. SEM analyses provide the indirect evidence of the encapsulation of silicone oil around the filler. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 121–128, 2002  相似文献   

7.
New vinyl ester systems are prepared using allyl‐functional benzoxazine monomers, 3‐allyl‐6‐methyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazine (pC‐ala) or bis(3‐allyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazin‐6‐yl)methane (BF‐ala), as reactive diluents for vinyl ester resins derived from an epoxy resin, diglycidyl ether of bisphenol A, instead of using styrene. Different initiators are used to investigate the copolymerization of allyl function from pC‐ala with vinyl function from vinyl ester resin prepolymer. The temperature dependence of viscosity is studied to demonstrate the retention of processability of the new vinyl ester resins. Dynamic mechanical and thermogravimetric analyses are used to investigate the dynamic mechanical properties and thermal stability of the new resins. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
Three samples of vinyl ester resins (VERs) were synthesized using bisphenol‐A‐based epoxy resins of varying epoxide equivalent weights (EEW) and acrylic acid in presence of triphenylphosphine as a catalyst at 80 ± 2°C. The cresyl glycidyl ether was used as reactive diluent during the synthesis of VERs. A suitable reaction mechanism was proposed and discussed for the reactions involving epoxide group and acid groups. This was further confirmed by infrared spectroscopic analysis. The maximum peak temperature from DSC were at 106.05°C, 114.20°C, and 128.86°C for benzoyl peroxide initiated VERs viz. samples V1CV, V2CV, and V3CV, respectively, increased with the increase of EEW of the parent epoxy resin. It has also been found that the films of VER having highest EEW of bisphenol‐A epoxy resin showed best chemical resistance amongst all other VERs in this study. The mechanical properties such as hardness and flexibility also showed a similar trend. The thermal stability was found to decrease with the increase of EEW of bisphenol‐A epoxy resin in the VERs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Vinyl ester resins are being used extensively as matrices in fiber‐reinforced polymer composite materials, but their use as a structural adhesive has been limited. Initial studies investigating the durability of a vinyl ester as a wood adhesive showed unsatisfactory performance in comparison with other adhesives. In this work, the glass‐transition temperatures (Tg's) of a vinyl ester and a E‐glass/vinyl ester composite material, fabricated by the Composites Pressure Resin Infusion System, were determined with dynamic mechanical thermal analysis. The results indicated that the resin cured under ambient conditions had a much lower Tg (~60°C) than the postcured material (~107°C). This suggested undercuring, that is, incomplete crosslinking, of the resin when it was cured at room temperature. E‐glass/vinyl ester samples, however, showed virtually no difference in Tg between room‐temperature‐cured and postcured samples. The exact reasons for this are not currently known but are thought to be both mechanical and chemical in nature. On the basis of the findings presented in this article, it can be concluded that if this vinyl ester resin is to be used as a structural adhesive, postcuring or formulation to ensure a high degree of crosslinking under ambient conditions is necessary. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2221–2229, 2005  相似文献   

10.
In this study, the gallic acid‐based epoxy resin (GA‐ER) and alkali‐catalysed biphenyl‐4,4′‐diol formaldehyde resin (BPFR) are synthesized. Glass fibre‐reinforced GA‐ER/BPFR composites are prepared. Graphene oxide (GO) is used to improve the mechanical and thermal properties of GA‐ER/BPFR composites. Dynamic mechanical properties and thermal, mechanical, and electrical properties of the composites with different GO content are characterized. The results demonstrate that GO can enhance the mechanical and thermal properties of the composites. The glass transition temperature, Tg, of the BPFR/GA‐ER/GO composites is 20.7°C higher than the pure resin system, and the 5% weight loss temperature, Td5, is enhanced approximately 56.6°C. When the BPFR: GA‐ER mass ratio is at 4 : 6 and GO content is 1.0–1.2 wt %, the tensile and impact strengths of composites are 60.97 MPa and 32.08 kJ/m2 higher than the pure resin composites, respectively. BPFR/GA‐ER composites have better mechanical properties, and can replace common BPA epoxy resins in the fabrication of composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42637.  相似文献   

11.
Silicone resins have been used as binders for ceramic frit coatings and can withstand temperatures of 650°C to 1260°C. Conceptually, silicone resins can potentially be used as matrices for high temperature fiber‐reinforced composites. The mechanical and thermal properties of a commercially available silicone resin, Dow Corning® 6‐2230, were characterized. Neat 6‐2230 resin was found to have inferior room temperature mechanical properties such as flexural, tensile and fracture properties when compared to epoxy. The room temperature flexural properties and short beam shear strength of the silicone/glass composites were also found to be lower than those of epoxy/glass composite with similar glass content. However, the silicone resin had better elevated temperature properties. At an elevated temperature of 316°C, the retentions of flexural modulus and strength were 80% and 40% respectively of room temperature values; these were superior to those of phenolic/glass. Unlike the carbon‐based resins, the drop in flexural properties of the silicon/glass laminates with temperature leveled off with increase in temperature beyond 250°C. The resin weight loss at 316°C in 100 cm3/min of flowing air was small compared to other carbon‐based resins such as PMR‐15 and LaRC TPI. Only Avimid‐N appeared comparable to Dow Corning® 6‐2230.  相似文献   

12.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

13.
In this article, a novel boron‐doped silicone resin (BSR) was synthesized by hydrolysis‐polycondensation method, with propyl‐triethoxysilane (PTES), dimethyl‐diethoxysilane (DMDES), and boric acid (BA) as starting materials, using absolute ethyl alcohol as solvent and hydrochloric acid as catalyst. The structures of the BSR were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), Xray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). FTIR spectra showed characteristic B? O? Si and Si? O? Si stretching modes. XPS and NMR results confirmed further that boron element was doped successfully into the main chains of the silicone resin as Si? O? B bond motifs, and hydroxyl groups from BA were condensed properly with Si? OH or Si? OR to form cross‐linked structure of BSR with narrowed molecular weight distributions in optimum experimental condition. The thermal stability of the BSR was studied by thermogravimetry analysis and derivative thermogravimetry. The thermal degradation temperature of the silicone resin improved greatly after doping element boron into the main chain, and the thermal stability of the BSR was influenced by the content of boron. The thermal degradation mechanism of this BSR was also discussed. The degradation process can be divided into two stages, the weight loss in the first stages may be corresponding to the loss of the small groups and weaker bonds in the chains, such as ? CH3, and ? C3H7, the weight loss in the second stage may be corresponding to the loss of the group as ? OC2H5. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40934.  相似文献   

14.
The morphology–toughness relationship of vinyl ester resins was studied as a function of their modification. Bisphenol A based and novolac‐based vinyl ester resins were modified by a star‐shaped polyether polymer with vinyl and hydroxyl functionalities and/or by a polyisocyanate. The polyisocyanate‐containing systems were termed vinyl ester/urethane hybrids. The morphology of the crosslinked resins was studied with dynamic mechanical thermal analysis and atomic force microscopy with ion‐eroded specimens and discussed. The toughness of the crosslinked resins was assessed by the linear elastic fracture mechanics with compact tension specimens. The fracture toughness and energy changed fairly linearly as functions of Mc and Mc0.5, respectively, where Mc is the mean molecular mass between crosslinks. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4012–4022, 2006  相似文献   

15.
High-performance tetrafunctional epoxy resins were synthesized by reacting a suitable tetraphenols which were obtained by the condensation of appropriate dialdehyde with phenol followed by epoxidation with a halohydrin. The structure of the synthesized tetraphenols was confirmed by infrared (IR), mass spectra (MS), and nuclear magnetic resonance (NMR) spectroscopy. Dispersed silicone rubbers were used to reduce the stress of the synthesized tetrafunctional epoxy resin cured with phenolic novolac resin for electronic encapsulation application. The dynamic viscoelastic properties and morphologies of neat rubber-modified epoxy networks were investigated. The thermal mechanical properties and moisture absorption of encapsulants formulated from the synthesized tetrafunctional epoxy resins were also studied. The results indicate that a low-stress, high glass transition temperature (Tg), and low-moisture-absorbing epoxy resin system was obtained for semiconductor encapsulation application. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
A new high‐ultraviolet (UV)‐transmission silicone‐resin polymeric material was prepared via curing during hydrosilylation of tetramethyltetravinylcyclotetrasiloxane with tetramethylcyclotetrasiloxane by a liquid‐surface supernatant method, using a stepwise heating program to avoid spontaneous combustion of the reaction mixture. The relationships were investigated in detail between reactive groups, cross‐linking density, mechanical and UV‐transmission properties. For this purpose, UV transmittance and dynamic mechanical properties, respectively, of the silicone resin were measured with UV–visible spectrophotometry and dynamic mechanical thermal analysis. In addition, surface roughness was evaluated with an atomic force microscope as well as an interferometer. The curing process was monitored by Fourier transform infrared spectroscopy and rotational rheometry. The cyclic silicone oils were compared with linear ones in structure and product properties. The results indicated that stepwise temperature control during curing process was particularly indispensible due to the presence of active Si? H bonds, and that the silicone resin of high modulus, high UV transmittance (92.7%) and low surface‐roughness was largely homogeneous in cross‐linking points distribution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43308.  相似文献   

17.
A bio‐based thermoset resin has been synthesized from glycerol reacted with lactic acid oligomers of three different chain lengths (n): 3, 7, and 10. Lactic acid was first reacted with glycerol by direct condensation and the resulting branched molecule was then end‐functionalized with methacrylic anhydride. The resins were characterized by Fourier‐transform infrared spectroscopy (FT‐IR), by 13C‐NMR spectroscopy to confirm the chemical structure of the resin, and by differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA) to obtain the thermal properties. The resin flow viscosities were also measured using a rheometer with different stress levels for each temperature used, as this is an important characteristic of resins that are intended to be used as a matrix in composite applications. The resin with a chain length of three had better mechanical, thermal, and rheological properties than the resins with chain lengths of seven and 10. Also, its bio‐based content of 78% and glass transition temperature of 97°C makes this resin comparable to commercial unsaturated polyester resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40488.  相似文献   

18.
N‐Phenylmaleimide–N‐(p‐hydroxy)phenylmaleimide–styrene terpolymer (HPMS), carrying reactive p‐hydroxyphenyl groups, was prepared and used to improve the toughness of cyanate ester resins. Hybrid modifiers composed of N‐phenylmaleimide–styrene copolymer (PMS) and HPMS were also examined for further improvement in toughness. Balanced properties of the modified resins were obtained by using the hybrid modifiers. The morphology of the modified resins depends on HPMS structure, molecular weight and content, and hybrid modifier compositions. The most effective modification of the cyanate ester resin was attained because of the co‐continuous phase structure of the modified resin. Inclusion of the modifier composed of 10 wt% PMS (Mw 136 000 g mol?1) and 2.5 wt% HPMS (hydroxyphenyl unit 3 mol%, Mw 15 500 g mol?1) led to 135% increase in the fracture toughness (KIC) for the modified resin with a slight loss of flexural strength and retention of flexural modulus and glass transition temperature, compared with the values for the unmodified resin. Furthermore, the effect of the curing conditions on the mechanical and thermal properties of the modified resins was examined. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified cyanate ester resin system. © 2001 Society of Chemical Industry  相似文献   

19.
The blending and white spirit permeation properties of the MPAEVOH blends of modified polyamide (MPA) and ethylene vinyl alcohol copolymer (EVOH) were systematically investigated in this study. Three types of EVOHs with varying vinyl alcohol contents were used to prepare the MPAEVOH resins by melt blending them with the MPA resin, respectively. The peak melting temperatures and percentage crystallinity (Wc) values of the EVOH specimens increase significantly as their vinyl alcohol contents increase. The X‐ray diffraction patterns of the melt‐crystallized EVOH crystals transform from monoclinic to orthorhombic lattice as their vinyl alcohol contents are equal to or less than 56 wt %. After blending EVOH in MPA resins, the main melting endotherms and characteristic X‐ray diffraction patterns of both monoclinic and orthorhombic lattices of EVOH crystals originally present in MPAEVOH specimens almost disappear completely, when the weight ratios of MPA to EVOH are equal to or greater than 4. The free‐volume properties and white spirit permeation rates of the EVOH specimens reduce significantly as their vinyl alcohol contents increase. A noticeable “negative deviation” was found on the plots of white spirit permeation rates, annihilation intensity (I3), and/or fractional free‐volume (Fv) versus MPA contents as the MPA contents of each MPAEVOH sample series reach about 80 wt %. Possible reasons accounting for these interesting blending and barrier properties of MPAEVOH specimens are discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1224–1233, 2006  相似文献   

20.
In this work, a series of siloxane epoxy resins (E3074) were synthesized through reaction of poly(methylphenylsiloxane) (DC‐3074) with epoxy resin. The chemical structure of the resultant epoxy resin was determined by FTIR, GPC, and epoxy equivalent weight (EEW) tests. The mechanical measurements indicated that the tensile strength of E3074 was lower than that of neat epoxy resin after modification, while their elongations at break improved markedly when compared with that of epoxy resin. SEM revealed that the particle size of silicone had a significant effect on the mechanical properties of the modified epoxy resin. TGA results showed that the thermal stability of E3074 serials was better than that of epoxy resin. The char residue of E3074 at 600°C increased with the incremental content of silicone. DMA tests displayed that the addition of silicone effectively enhanced the damping properties of epoxy resin. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40212.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号