首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polystyrene (PS) spheres with cationic polyelectrolyte brushes were prepared by reversible addition‐fragmentation chain transfer polymerization (RAFT) from cross‐linked PS spheres. These PS spheres were subsequently modified by reaction with chloroacetyl chloride and S,S‐Bis(α,α’‐dimethyl‐α”‐acetic acid) trithiocarbonate to serve as macro chain transfer agents (macro‐CTAs). Methacryloxyethyltrimethyl ammonium chloride (MAC) was then grafted from these macro‐CTAs of PS spheres to obtain cationic PS spheres. FT‐IR, 13C‐NMR, SEM, element analysis, and TGA techniques were applied to investigate and optimize the structure of PS spheres. The cationic PS spheres loading 1.35 mmol/g poly‐MAC were used as absorbents for removal of polygalacturonic acid (PGA) and sodium ligninsulfonate (lignin‐Na). Adsorption capacity of cationic PS spheres could reach 3 mg PGA/g and 24 mg lignin‐Na/g, respectively. Moreover, adsorption isotherm data of PGA were described by Langmuir‐Freundlich model, whereas lignin‐Na conformed to Langmuir model. Kinetic studies suggested that dissolved substances (PGA and lignin‐Na) could diffuse into the pores of cationic PS spheres. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42509.  相似文献   

2.
The accumulation of dissolved and colloidal substances (DCS) and inorganic salts in the white water of papermaking circulation system will result in the abnormal runnability of paper machine and low quality of products. Contaminant adsorption on a solid adsorbent in a fluidized bed reactor has been applied for white water treatment. In this study, three kinds of hydrophilic polymers {i.e., poly[methacryloxyethyltrimethyl ammonium chloride] (poly‐MAC), polyacrylamide, and poly[acrylic acid] (poly‐AA)} had been grafted on the surface of the polystyrene (PS) spheres through two‐step reactions. Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, Zeta potential were evaluated the characteristics of modified PS spheres. The results showed that PS‐poly(MAC) had good affinity to DCS. Cationic demand, total DCS, and turbidity of white water had been reduced by 79.5%, 40.0%, and 38.4%, respectively, when the amount of PS‐poly(MAC) was 50 g/L. While PS‐poly(AA) played an important role in removal of metal ions so as to cut down the conductivity of white water. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45169.  相似文献   

3.
A new way of producing polycation‐grafted fibrous cellulose for its use as a retention aid in the papermaking process was conceived. It consists of adding, under intense stirring, to a cellulose fibers suspension at a basic pH a cationic polyacrylamide dissolved in water. As the cellulose fiber's surface is negatively charged because of its more or less acid groups, the cationic polymer adsorbs on it. The cationic‐grafted cellulose fibers are very similar to the cellulose fibers used in papermaking, since the polymer is (on a micrometer scale) homogeneously grafted on them as a film. It could so be used to increase the retention of the negatively charged fillers, fibers, and pigments during the process, without altering the properties of the resulting sheet of paper. The amount of polymeric grafts depends on the quantity of anionic groups on fiber's surface and varies monotonically with the grafting temperature and polyacrylamide's concentration in the blend. The grafted fibrous cellulose is well stable, even in drastic media and for lower Mw grafts, and the amount of grafted polymer also depends on the concentration and characteristics of fiber's suspension. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3149–3157, 2006  相似文献   

4.
Polystyrene‐block‐polyisoprene (PS‐block‐PI; high 3,4‐structure) diblock copolymer was prepared by living anionic polymerization. For transfer into a reactive intermediate, the hydroxylation of the double bonds of PI block was achieved by hydroboration, followed by oxidation. Esterification of the hydroxy‐derivative with stearoyl chloride or decanoyl chloride resulted in block‐graft copolymers composed of PS (flexible chain)‐grafted long alkane (stretched chains). After partial chloromethylation of PS block copolymer, photofunctional N,N‐diethyldithiocarbamate (DC) groups were introduced into such pendant sites by reaction with the corresponding sodium salt. We studied the self‐assemblies of photofunctional block‐graft copolymers in a selective solvent, such as heptane, and constructed nanostructured polymers by crosslinking PS cores under UV irradiation. © 2001 Society of Chemical Industry  相似文献   

5.
In this study, by in situ reduction of Pd2+ ions attached on the surface of the sulfonated polystyrene (PS‐SO3H) spheres, complete and dense palladium (Pd) nanoparticles (NPs) layer were deposited around PS‐SO3H spheres. The PS@Pd spheres were wrapped by polypyrrole (PPy) shell, which could avoid escaping of Pd NPs. After selectively etching the PS core, the hollow structures with Pd NPs embedded in PPy capsule shell were obtained. The as‐prepared Pd@PPy hollow capsules showed excellent catalytic activity toward the reduction of 4‐nitroaniline because of the high Pd NPs loading. Furthermore, good reusabilty was demonstrated seven times without any detectible loss in activity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43933.  相似文献   

6.
Both silica/polystyrene (SiO2/PS) and silica/polystyrene‐b‐polymethacryloxypropyltrimethoxysilane (SiO2/PS‐b‐PMPTS) hybrid nanoparticles were synthesized via surface‐initiated atom transfer radical polymerization (SI‐ATRP) from SiO2 nanoparticles. The growths of all polymers via ATRP from the SiO2 surfaces were well controlled as demonstrated by the macromolecular characteristics of the grafted chains. Their wettabilities were measured and compared by water contact angle (WCA) and surface roughness. The results show that the nanoparticles possess hydrophobic surface properties. The static WCA of SiO2/PS‐b‐PMPTS hybrid nanoparticles is smaller than that of SiO2/PS hybrid nanoparticles, meanwhile, the surface roughness of SiO2/PS‐b‐PMPTS hybrid nanoparticles is yet slightly rougher than that of SiO2/PS hybrid nanoparticles, which shows that the combination and competition of surface chemistry and roughness of a solid material can finally determine its wettability. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
Poly(ethylene oxide) (PEO) monochloro macroinitiators or PEO telechelic macroinitiators (Cl‐PEO‐Cl) were prepared from monohydroxyfunctional or dihydroxyfunctional PEO and 2‐chloro propionyl chloride. These macroinitiators were applied to the atom transfer radical polymerization of styrene (S). The polymerization was carried out in bulk at 140°C and catalyzed by Copper(I) chloride (CuCl) in the presence of 2,2′‐bipyridine (bipy) ligand (CuCl/bipy). The amphiphilic copolymers were either A‐B diblock or A‐B‐A triblock type, where A block is polystyrene (PS) and B block is PEO. The living nature of the polymerizations leads to block copolymers with narrow molecular weight distribution (1.072 < Mw/Mn < 1.392) for most of the macroinitiators synthesized. The macroinitiator itself and the corresponding block copolymers were characterized by FTIR, 1H NMR, and SEC analysis. By adjusting the content of the PEO blocks it was possible to prepare water‐soluble/dispersible block copolymers. The obtained block copolymers were used to control paper surface characteristics by surface treatment with small amount of chemicals. The printability of the treated paper was evaluated with polarity factors, liquid absorption measurements, and felt pen tests. The adsorption of such copolymers at the solid/liquid interface is relevant to the wetting and spreading of liquids on hydrophobic/hydrophilic surfaces. From our study, it is observed that the chain length of the hydrophilic block and the amount of hydrophobic block play an important role in modification of the paper surface. Among all of block copolymers synthesized, the PS‐b‐PEO‐b‐PS containing 10 wt % PS was found to retard water absorption considerably. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4304–4313, 2006  相似文献   

8.
Silk grafting with methacrylic and epoxy monomers was studied with the aim to obtain high graft yields. With both monomer types optimum operating conditions of thermal grafting in water bath were established. In particular, three epoxy monomers were tested at various concentrations, at different temperatures and reaction times, with sodium chloride or sodium thiosulphate as catalysts. Optimum yields (76–82%) were found with Araldite DY‐T for 2 h at 70°C with 3M sodium chloride. The results were compared with those obtained with the same monomers by UV curing, radical with methacrylates and cationic with the epoxy resin. The UV curing efficiency was tested by gel content determinations. Thermal and UV cured fibers were then subjected to measurements of fibroin solubility in ethanol–calcium chloride–water mixture to evaluate the crosslinking degree. Except in the case of methacrylamide, radical UV curing yielded fibers more crosslinked than thermal treatment, or crosslinked to the same extent, whereas cationic UV curing showed lower crosslinking effects. The grafted fibers were characterized through DSC measurements and FTIR‐ATR spectrometry. Finally, surface morphology of UV‐cured samples was investigated through SEM analyses which showed that the better products could be obtained with UV curing at low add‐on, mainly with dimethacrylates and Araldite DY‐T, whereas the thermal grafting seems to be preferable for high add‐on. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
A versatile method is described to synthesize a new family of solvent‐responsive membranes whose response states can be not only tunable but also fixable via ultraviolet (UV) irradiation induced crosslinking. The atom transfer radical polymerization (ATRP) initiator 2‐bromoisobutyryl bromide was first immobilized on the poly(ethylene terephthalate) (PET) track‐etched membrane followed by room‐temperature ATRP grafting of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate‐co‐2‐(dimethylamino)ethyl methacrylate) (P(HEMA‐co‐DMAEMA)) respectively. The hydroxyl groups of PHEMA were further reacted with cinnamoyl chloride (a photosensitive monomer) to obtain photo‐crosslinkable PET‐g‐PHEMA/CA membrane and PET‐g‐P(HEMA/CA‐co‐DMAEMA) membrane. The length of grafted polymer chains was controllable by varying the polymerization time. X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy in attenuated total reflection and thermogravimetric analysis were employed to characterize the resulting membranes. The various membrane surface morphologies resulting from different states of the grafted chains in water and dimethylformamide were characterized by scanning electron microscopy. It was demonstrated that the grafted P(HEMA/CA‐co‐DMAEMA) chains had more pronounced solvent responsivity than the grafted PHEMA/CA chains. The surface morphologies of the grafted membranes could be adjusted using different solvents and fixed by UV irradiation crosslinking. © 2014 Society of Chemical Industry  相似文献   

10.
Polymerizable ionic liquids (ILs) 1‐methyl‐3‐(4‐vinylbenzyl)imidazolium chloride, 1‐hexyl‐3‐(4‐vinylbenzyl)imidazolium chloride and 1‐dodecyl‐3‐(4‐vinylbenzyl)imidazolium chloride were prepared and used as new surfactants for the modification of montmorillonite (MMT). Functionalized MMTs were prepared by cationic exchange between sodium MMT and each of the ILs. Polystyrene (PS)/MMT composites were subsequently prepared by in situ intercalative free radical polymerization of styrene containing dispersed organophilic MMT. Exfoliation of MMT in the PS matrix was achieved only for MMT functionalized with the 1‐dodecyl‐3‐(4‐vinylbenzyl)imidazolium‐based IL as revealed by X‐ray diffraction and electron microscopy. The exfoliated composites showed good transparency and higher decomposition temperature than virgin polymer matrix, particularly pronounced under air atmosphere (ΔTmax = 66 °C), data comparable to or even greater than those reported in the literature for exfoliated PS nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
A new kind of initiator, 3‐(2‐bromo‐2‐methylacryloxy)propyltriethysiliane (MPTS‐Br), was prepared with a simply hydrobrominated commercial silane coupling agent (3‐methacryloxy‐proplytriethysilane, MPTS). It has been one‐step self‐assemble onto the surface of attapulgite (ATP) nanorods in the dispersion system, and by using this initiator‐modified nanorod (MPTS‐Br‐modified ATP nanoparticles, ATP‐MPTS‐Br) as macroinitiator for atom transfer radical polymerization (ATRP). Structurally well‐defined homopolymer polystyrene (PS) and block polymer poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) chains were then grown from the needle‐shaped nanorods surface to yield monodispersed nanorods composed of ATP core and thick‐coated polymer shell (ATP and PS). The graft polymerization parameters exhibited the characteristics of a controlled/”living” polymerization. The PS‐grafted ATP nanorods could be dispersed well in organic solvent with nanoscale. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Reversible addition‐fragmentation chain transfer (RAFT) radical polymerization was used for controlled grafting of styrene and p‐chlorostyrene from the surface of ramie fiber. The hydroxyl groups in ramie fiber were first converted to thiocarbonylthio groups as the RAFT chain transfer agent then used to mediate the RAFT polymerization of styrene, and p‐chlorostyrene in tetrahydrofuran using azobis (isobutyronitrile) as initiator at 60°C. The grafted copolymers were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry, and contact angle measurements. The results confirmed that grafting occurred on the surface of the ramie fiber, substantially increasing the water contact angle from 75.31° to 147° for polystyrene grafted ramie fiber (cell‐PS) and 135° for poly(p‐chlorostyrene) (cell‐PSCl), and improving the hydrophobicity of the grafted fiber. The homopolymers formed in the polymerization were analyzed by size exclusion chromatography to estimate the molecular weights and polydispersity indices (PDIs) of chains grafted from the surface of the ramie fiber, as well as showed narrow chain length distributions with a PDI of 1.32–1.70. These materials possess potential applications in many advanced technologies. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Modified carbon spheres (CSPBs) were obtained by grafting poly(diallyl dimethyl ammonium chloride) (p-DMDAAC) on the surface of carbon spheres (CSs). It can be viewed as a kind of cation spherical polyelectrolyte brushes (CSPBs), which consist of carbon spheres as core and polyelectrolytes as shell. The method of synthesizing carbon spheres was hydrothermal reaction. Before the polyelectrolyte brushes were grafted, azo initiator [4,4′-Azobis(4-cyanovaleric acyl chloride)] was attached to the carbon spheres'' surface through hydroxyl groups. CSPBs were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), conductivity meter, and system zeta potential. The results showed that compared with carbon spheres, the conductivity and zeta potential on CSPBs increased from 9.98 to 49.24 μS/cm and 11.6 to 42.5 mV, respectively, after the polyelectrolyte brushes were grafted. The colloidal stability in water was enhanced, and at the same time, the average diameter of the CSPBs was found to be 173 nm, and the average molecular weight and grafted density of the grafted polyelectrolyte brushes were 780,138 g/mol and 4.026 × 109/nm2, respectively.  相似文献   

14.
A series of amphoteric, superabsorbent polymers [poly(acrylic acid‐co‐diallyldimethylammonium chloride)] with different molar ratios of anionic groups to cationic groups were prepared by solution polymerization to investigate their swelling behaviors and the controlled release of agrochemicals. Various factors, including the solution pH, the concentrations of different salt solutions, and the temperature, were studied. The dynamic parameters of hydrogels at different temperatures suggested that diffusion was Fickian at lower temperatures, whereas non‐Fickian diffusion prevailed at higher temperatures. A copolymer hydrogel with a low anionic‐group/cationic‐group ratio showed a higher swelling capacity in water and higher salt tolerance. Also, the anionic‐group/cationic‐group ratio was not the dominant factor in determining the water retention. A poly(acrylic acid‐co‐diallyldimethylammonium chloride) hydrogel could control the release of agrochemicals effectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 986–991, 2006  相似文献   

15.
An antifouling surface is highly desirable for many biomedical applications. In this study, poly(vinyl chloride) (PVC) films were endowed with the improved properties of resisting nonspecific protein adsorption and platelet adhesion simply through being coated with a kind of mixed‐charge zwitterionic polymer, poly(3‐sulfopropyl methacrylate–methacrylatoethyl trimethyl ammonium chloride–glycidyl methacrylate) (PSTG), with random moieties of negatively charged 3‐sulfopropyl methacrylate potassium, positively charged [2‐(methacryloyloxy)‐ethyl] trimethylammonium chloride, and glycidyl methacrylate. The PSTG‐grafted PVC films were formed by the simple immersion of an amino‐functionalized PVC film into a PSTG solution. A grafting density of 220.84 µg/cm2 of PSTG4‐grafted PVC film was successfully obtained. The PSTG4‐grafted PVC film showed a lower contact angle (37.5 °) than the ungrafted PVC film (98.3 °). The in vitro protein adsorption results show that the bovine serum albumin adsorption amount decreased 6.72 µg/cm2 in the case of the PSTG4‐grafted PVC film, whereas that on the ungrafted PVC film was 28.54 µg/cm2. So, PSTG‐grafted PVC films could be promising materials for medical devices. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44632.  相似文献   

16.
An electrostatic self‐assembly technique was applied to prepare ion complex polymer layers on polyacrylonitrile with acrylic acid segments {poly(acrylonitrile‐co‐acrylic acid) [P(AN‐co‐AA)]}. For the ionic complex layers, quaternary ammonium salts, such as cetyl trimethyl ammonium chloride (CTAC) and tetramethyl ammonium chloride (TMAC), were used as cationic species, and also, poly(acrylic acid) (PAA) was used as an anionic species. These cationic and anionic species were self‐assembled alternately on the surface of the P(AN‐co‐AA) membrane. Fourier transform infrared spectroscopy, AFM, and water contact angle measurements of the membrane surface were used to confirm the formation of the multilayer composites on the P(AN‐co‐AA). The permeabilities of water and macromolecules of different molecular weights were evaluated by a membrane filtration technique. The values of permeability strongly depended on the formation layer by layer of these ion composites on the base P(AN‐co‐AA). Through the measurement of the values of the contact angle of water, it was clear that surface nature of the base membrane treated by CTAC or TMAC and PAA dramatically changed. We concluded that such an electrostatic self‐assembly technique is useful for the preparation of multicomposite layers to modify the surface of base P(AN‐co‐AA) membranes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Well‐defined polymer‐Mg(OH)2 nanocomposites were prepared by atom transfer radical polymerization (ATRP). The ATRP initiators were covalently attached to the Mg(OH)2 by esterification of 2‐chloropropionyl chloride with hydroxyl group. The amount of polymer grafted from Mg(OH)2 can be controlled using a different catalyst system and adding a small amount of polar solvent. The well‐defined diblock copolymer, consisting of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) were synthesized. The products were characterized by nuclear magnetic resonance, Fourier transform infrared, differential scanning calorimetry, and thermal gravimetric analysis. The morphologies of PS/PMMA and PS/PMMA/Mg(OH)2g‐PS‐b‐PMMA blends are compared by using a scanning electron microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3680–3687, 2007  相似文献   

18.
This article describes an in situ bulk polymerization process of styrene in the presence of silica nanoparticles. In this peroxide bulk polymerization process, two polystyrene fractions are formed: A polystyrene (PS) fraction attached to the particle's surface, which cannot be detached by hot xylene extraction, and an unattached PS fraction which dissolves in xylene. Solvent extraction and TGA measurements have confirmed the existence of grafted PS chains to the silica surfaces. FTIR measurements have indicated the existence of Si O C bonds connecting the PS grafts to the silica surface. Polypropylene (PP) was blended with the extracted PS‐g‐silica particles to produce concentrations of 1–3% nanoparticles in the PP composites. A remarkably improved dispersability of the nanoparticles was achieved, thus grafting reduces re‐agglomeration and increases the affinity of the grafted surface to the polymer matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
In this study, the photonic bandgap (PBG) film with tunable mechanical properties and photonic stop band was prepared by a simple and feasible approach. Colloid polymer spheres with a relatively large diameter (approximate Dn of 200 nm) and different glass transition temperatures (Tg) were blended with small polystyrene (PS) latex (Dn = 20 nm) and were subsequently casted on a substrate for 3 h at 50°C for self‐assembly of the PBG film. The monodispersed polymer spheres were synthesized by soap‐free emulsion polymerization in the boiling state. The Tg values of the spheres were predetermined based on the Fox equation, and designed to fall in the region of ?34°C to 112°C. Small PS could also be synthesized by this approach using the comonomer, sodium p‐styrenesulfonate (NaSS), to ensure the small diameter. The long‐range ordered structure constructed by embedding the small PS in the PBG film was indirectly confirmed on the basis of SEM analysis, from which the monochromatic film color was determined based on Bragg's diffraction law. Tunable film color was achieved by adjusting the diameter of the spheres, as evaluated using UV–Vis. Tunable mechanical properties of the PBG film were also achieved by varying the Tg of the spheres or the filling ratio of small PS. Based on these approaches, the ultimate tensile strength could be tuned in the region between 0.39 to 4.7 Mpa, and the relative strain could be varied from 1236% to 16%, illustrative of the excellent deformability of the film. Furthermore, by variation of these two parameters, the film properties could be changed from typical elastomer behavior to brittle plastic polymer type behavior, greatly extending the prospective application fields. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40276.  相似文献   

20.
Halloysite nanotubes (HNTs) were grafted with poly(styrene–butyl acrylate–acrylic acid) (P‐SBA) via an in situ soap‐free emulsion polymerization. To introduce double bonds into the HNTs, N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane was first used to modify the HNTs and render amino groups, and then, the double bonds were anchored through an amidation reaction between acryloyl chloride and amino groups. P‐SBA chains were grafted onto HNTs because of participating of double bonds in the copolymerization of styrene, butyl acrylate, and acrylic acid. Fourier transforms infrared spectroscopy, transmission electron microscopy, specific surface area measurements, and thermogravimetric analysis were used to characterize the HNTs grafted with P‐SBA. The results indicate that 25.21% of P‐SBA was grafted onto the outer walls of the HNTs and filled into the inner spaces of the HNTs. The modification dramatically decreased the surface area of the HNTs. The property study of the HNTs grafted with P‐SBA focused on the dispersion behavior in the biphase system. The results show that the grafted HNTs dispersed stably in the water/cyclohexane biphase system and were a potential emulsifier. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号