首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two series of aromatic polyimides containing various‐sized alkyl side groups were synthesized by thermal imidization of the poly(amic acid)s prepared from the polyaddition of benzophenonetetracarboxylic dianhydride and hexafluoro‐isopropylidene bis(phthalic anhydride) with 4,4′‐methylenedianiline, 4,4′‐methylene‐bis(2,6‐dimethylaniline), 4,4′‐methylene‐bis(2,6‐diethylaniline), and 4,4′‐methylene‐bis(2,6‐diisopropylaniline). The extent to which alkyl substitutes affect the thermal properties of polyimides was examined by differential scanning calorimetry, thermomechanical analyzer, and thermogravimetric analysis techniques. The analytical results demonstrated that the incorporation of alkyl moieties causes a moderate increase in the coefficient of thermal expansion and a slight decrease in thermal stability. Notably, all polymers had a decomposition temperature exceeding 500°C. The glass transition temperature increases markedly when hydrogen atoms at ortho positions on aniline rings are replaced with methyl groups, but decreases with growing alkyl side group size. The dielectric measurements show that the polymer possessing a large alkyl side group would have the lower dielectric value. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4672–4678, 2006  相似文献   

2.
Polyimides containing polybutadiene blocks were prepared by copolycondensation of benzophenone-3,3′,4,4′-tetracarboxylic dianhydride, diphenylmethane-4,4′-diisocyanate and isocyanate-endcapped polybutadiene LBD-3000. 13C NMR CP-MAS and FTIR spectroscopies were used to determine the chemical structure of the copolymers. TGA showed that the thermal stability of the copolymers in inert atmosphere is almost independent of the polybutadiene content in the copolymer (as follows from the temperature of 10% and 20% weight loss). Stress–strain experiments showed that copolymers containing amounts of polybutadiene higher than 59 wt% exhibited elastomeric behaviour. © 1999 Society of Chemical Industry  相似文献   

3.
Two series of aromatic polyimides containing various linkage groups based on 2,7‐bis(4‐aminophenoxy)naphthalene or 3,3′‐dimethyl‐4,4′‐diaminodiphenylmethane and different aromatic dianhydrides, namely 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride), 4,4′‐(hexafluoroisopropylidene)bis(phthalic anhydride), 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride and 4,4′‐(4,4′‐hexafluoroisopropylidenediphenoxy)bis(phthalic anhydride), were synthesized and compared with regard to their thermal, mechanical and gas permeation properties. All these polymers showed high thermal stability with initial decomposition temperature in the range 475–525 °C and glass transition temperature between 208 and 286 °C. Also, the polymer films presented good mechanical characteristics with tensile strength in the range 60–91 MPa and storage modulus in the range 1700–2375 MPa. The macromolecular chain packing induced by dianhydride and diamine segments was investigated by examining gas permeation through the polymer films. The relationships between chain mobility and interchain distance and the obtained values for gas permeability are discussed. © 2014 Society of Chemical Industry  相似文献   

4.
The diamine 2‐methyl‐1,3‐bis(4‐aminophenyloxy)benzene was prepared via a nucleophilic substitution reaction and was characterized with Fourier transform infrared, elemental analysis, and 1H‐ and 13C‐NMR spectroscopy. The prepared diamine was also characterized with single‐crystal analysis. The geometric parameters of C19H18N2O2 were in the usual ranges. The dihedral angles between the central phenyl ring and the two terminal aromatic rings were 88.9 and 91.6°. The crystal structure was stabilized by N? H···N hydrogen bonds. The diamine was then polymerized with 3,3′,4,4′‐benzophenone tetracarboxylic acid dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 3,4,9,10‐perylenetetracarboxylic acid dianhydride, and pyromellitic dianhydride by either a one‐step solution polymerization reaction or a two‐step procedure. These polymers had inherent viscosities ranging from 0.61 to 0.85 dL/gm. Some of the polymers were soluble in most common organic solvents even at room temperature, and some were soluble on heating. The degradation temperatures of the resultant polymers fell in the range of 260–500°C in nitrogen (with only 10% weight loss). The specific heat capacity at 200°C ranged from 1.0 to 2.21 J g?1 K?1. The temperatures at which the maximum degradation of the polymer occurred ranged from 510 to 610°C. The glass‐transition temperatures of the polyimides ranged from 182 to 191°C. The activation energy and enthalpy of the polyimides ranged from 44.44 to 73.91 kJ/mol and from 42.58 to 72.08 kJ/mol K, respectively. The moisture absorption was found in the range of 0.23–0.71%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A fluorinated hyperbranched polyimide (HBPI) is synthesized by using a triamine monomer, 1,3,5‐tris(2‐trifluoromethyl‐4‐aminophenoxy)benzene (TFAPOB) (B3), as a “core” molecule, 4,4′‐oxydiphthalic anhydride (ODPA) as a A2 monomer, and 4‐aminophthalonitrile as an end‐capping reagent. After that, a series of novel fluorinated hyperbranched polyimides end‐capped with metallophthalocyanines were prepared by the reactions of dicyanophenyl end‐capped hyperbranched polyimide with excessive amounts of 1,2‐dicyanobenzene and the corresponding metal salt in quinoline. The resulting polyimides containing metallophthalocyanine unites shows optical absorption in the visible region. The absorption bands of the polymers in chloroform solution are in the range of 665–701 nm. These polyimides show glass transition temperatures between 216 and 225°C, and the 5 wt % weight loss temperature of the polymers varied from 440 to 543°C under nitrogen. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
A series of hyperbranched polysiloxane (HBPSi)-based hyperbranched polyimide (HBPI) films with low dielectric permittivity and multiple branched structures are fabricated by copolymerizing 2,4,6-triaminopyrimidine (TAP) with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-diaminodiphenyl ether, and HBPSi via the two-step polymerization method. The dielectric permittivity of HBPSi hyperbranched polyimide films decreases with increasing TAP fraction, namely, from 3.28 for sample PI-1 to 2.80 for PI-4, mainly owing to the enlarged free volume created by the incorporation of multiple branched structures. Moreover, HBPSi HBPI possesses desirable solubility and good mechanical properties and thermal stability. PI-4 not only has low dielectric permittivity (2.80, 1 MHz), excellent solubility (soluble in several common organic solvents), and remarkable thermal properties (glass-transition temperature of 273 °C, 5% weight loss temperature of 498 °C in N2 and 486 °C in O2), but it also demonstrates admirable mechanical properties with a tensile strength of 103 MPa, elongation at break of 7.3%, and a tensile modulus of 2.16 GPa. HBPSi HBPI might have potential applications in interlayer dielectrics and other microelectronics fields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47771.  相似文献   

7.
Achieving synergetic improvements of mechanical strength, toughness, and thermal stability of epoxy resin has been a crucial but very challenging issue. Herein, to explore a new solution for circumventing this issue, polyimide microspheres were successfully prepared through the inverse nonaqueous emulsion process, and the structure, size distribution and morphologies of polyimide (PI) microspheres were comprehensively investigated. Then the PI microspheres were incorporated in epoxy resin matrix to systematically investigate the mechanical and thermal properties of obtained epoxy/PI microspheres composites. It was found that the PI microspheres can not only enhance the mechanical strength of epoxy resin, but also significantly improve the toughness. Specially, the epoxy-based composites containing 3 wt% PI microspheres exhibit a 47% increase in tensile strength, while the GIC and Charpy impact strength increase by 106% and 200%, respectively. The toughing mechanism of epoxy/PI microspheres composites was discussed. Moreover, the PI microspheres can also endow the epoxy resin with excellent thermal stability and heat resistance. Thus, this work may open a new opportunity to synergistically enhance the mechanical and thermal properties of epoxy-based composites and may also give some valuable inspiration for the rational design of other high-performance thermosetting composites.  相似文献   

8.
Three new siloxane containing grafted copolyimides have been prepared by one‐pot solution imidization technique. The polymers are made by the reaction of 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) with commercially available diamine 4,4′‐oxydianiline (ODA) with variation of silicon containing diamine, namely 3,5‐diaminobenzoate terminated polydimethylsiloxane (DBPDMS), as a comonomer to 10, 20, and 30 wt %. The films of the polymers were prepared by casting the polymer solution in dichloromethane. The polymers have been well‐characterized by GPC, IR, and NMR techniques. Thermal stabilities and decomposition behavior of the copolyimides were studied by DSC and TGA. The water contact angle values of the films indicate hydrophobic nature of the polymers. Thermal, flame retardant, mechanical, and surface properties of these polymers have been compared with the homopolyimide and with polyimides where polysiloxane is incorporated in the main chain. DSC revealed melting of the grafted siloxane chain at sub‐ambient temperature and a glass transition corresponding to the main polymer chain above 200°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Poly(imide siloxane), block and blend copolymer, were synthesized using different methods to explore the influence of siloxane chains. The flexible siloxane chains enrichment on surface of copolymer, enhance hydrophobic and adhesive with copper foil. It also improves light transmittance of polyimide film in the visible light region. The effect of different preparation methods on the aggregation in polymers and on polymer properties, especially adhesion and water absorptivity, are also discussed. The imidization temperature and synthesis method (blend and block) during the reaction has a significant effect on the properties of the product, especially thermal properties (T g values are 207 °C for block and 180 °C for blend) and mechanical properties (elongation of 130% for block and 50% for blend). The bonding strength of polymer films used as hot melt adhesive was also tested. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48148.  相似文献   

10.
Benzyl bisthiosemicarbazone and its complexes with nickel (NiLH4) and copper (CuLH4) were used as diamine monomers for the synthesis of new Schiff‐base polyimides. The solution polycondensation of these monomers with the aromatic dianhydrides afforded metal‐containing Schiff‐base polyimides with inherent viscosities of 0.98–1.33 dL/g (measured in N‐methyl‐2‐pyrrolidone at 25°C). The polyimides were generally soluble in a wide range of solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, tetrachloroethane, hexamethylene phosphoramide, N‐methyl‐2‐pyrrolidone, ethyl acetate, and pyridine at room temperature. The initial degradation temperatures of the resultant polyimides fell in the range of 220–350°C in nitrogen with char yields ranging from 36 to 64% at 700°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A novel fluorinated diamine monomer with a keto group, 4‐[4‐amino‐2‐trifluoromethyl phenoxy]‐4′‐[4‐aminophenoxy]benzophenone (ATAB) was prepared by reacting dihydroxybenzophenone with 4‐chloronitrobenzene and 2‐chloro‐5‐nitrotrifluoromethylbenzene in the presence of potassium carbonate followed by catalytic reduction with palladized carbon (10%). Fluorinated polyimides IVa–e were synthesized from the diamine mentioned above via a two‐step method (thermal and chemical imidization). Polyimides IVa–e have inherent viscosities in the range 0.65–1.06 dL g?1 (thermal imidization) and 0.82–1.56 dL g?1 (chemical imidization). The polyimides prepared by chemical imidization exhibit excellent solubility. Polyimide films exhibit tensile strength, elongation and tensile modulus in the ranges 96–106 MPa, 9–13% and 1.1–1.7 GPa, respectively. The T10 values of the polyimides are in the range 540–598 °C in nitrogen and 545–586 °C in air, with more than 50–60% char yield. They have Tg values between 244 and 285 °C. The prepared polyimides show cut‐off wavelengths in the range 365–412 nm and transmittance at 450 nm in the range 80.9–94.2%. The dielectric constants of the polyimide films are in the range 3.10–3.77 at 1 kHz and 3.04–3.66 at 10 kHz, with moisture absorption of 0.14–0.40%. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
Liming Tao  Jingang Liu 《Polymer》2009,50(25):6009-186
Multitrifluoromethyl-substituted aromatic diamines, 1,1-bis[4-(4′- amino-2′-trifluoromethylphenoxy)phenyl]-1-(3″-trifluoromethylphenyl)-2,2,2-trifluoroethane (12FDA) and 1,1-bis[4-(4′-amino-2′-trifluoromethylphenoxy)phenyl]-1-[3″,5″-bis (trifluoromethyl)phenyl]-2,2,2-trifluoroethane (15FDA) were synthesized, which were employed to react with various aromatic dianhydrides to yield a series of highly fluorinated polyimides. The fluorinated polyimides synthesized showed great solubility with inherent viscosities of 0.47-0.69 dL/g. The strong and tough polyimide films exhibited good thermal stability with the glass transition temperature (Tg) of 209-239 °C and outstanding mechanical properties with the tensile strengths of 88-111 MPa and tensile modulus of 2.65-3.17 GPa. Dielectric constants of as low as 2.49 and low moisture absorptions (0.17-0.66%) were measured. The fluorinated polyimide films (7-10 μm in thickness) also showed highly optical transparency with light transmittance at 450 nm of as high as 97.0% and cutoff wavelength of as low as 298 nm. The average refractive indices and birefringence of the fluorinated polyimide films were measured in the range of 1.5060-1.5622 and 0.0036-0.0095, respectively. PI-7 and PI-8 exhibited low light-absorption in the near-infrared region, especially at the optocommunication wavelength of 1310 nm and 1550 nm.  相似文献   

13.
A highly thermally and temporally stable, second‐order, nonlinear‐optical polyimide with an X‐type chromophore (2‐{4‐[4,5‐di(4‐nitrophenyl)imidazolyl]phenyl}‐4,5‐di(4‐aminophenyl)imidazole) was synthesized by the Michael addition reaction. The structure of the prepolymer was characterized with Fourier transform infrared (FTIR). Its thermal stability and curing behavior were studied with differential scanning calorimetry, thermogravimetric analysis, and FTIR. After the curing, the glass‐transition temperature of the polyimide greatly increased. The FTIR results suggested that addition and/or crosslinking reactions were carried out during the thermal curing of the prepolymer. A poling polyimide film was achieved, and the thermal and temporal stability of the poling‐induced orientation were evaluated with a multistep corona‐poling technique at an elevated temperature and with in situ second harmonic generation (SHG) measurements. The temporal orientation of the poled polyimide film was over 1000 h at 150°C; it retained 85% of the initial second‐order, nonlinear‐optical coefficient. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The goal of this article was to synthesize a series of flexible polyimides containing ether linkage in main chain and clarified the effect of this ether linkage on some physical properties such as optical and thermal decomposition. Also, different functional group effects such as carbonyl (? C?O), hexa‐fluoro‐isopropylidene [? C(CF3)2? ] and phenyl (? C6H5) on these physical properties were evaluated. The structural characterization of poly(ether imide)s was performed using Fourier transform infrared, 1H‐nuclear magnetic resonance (NMR), and 13C‐NMR techniques. Optical band gap of polyimides was calculated in the range from 2.57 to 2.81 eV. Thermal characterization of poly(ether imide)s was carried out using thermogravimetry–differential thermal analysis and differential scanning calorimetry. Thermal stability of poly(ether imide)s was evaluated by initial decomposition temperature (Ton) and char. Ton value of polymers was determined in the range from 100 to 195 °C. In addition, glass transition temperatures of poly(ether imide)s were found between 144 and 148 °C. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46573.  相似文献   

15.
A siloxane‐grafted new diamino monomer DBPDMS has been prepared and used as a co‐monomer in combination with the fluorinated diamine monomer TFBB to prepare siloxane‐grafted polyimides. The polymers have been characterized by means of GPC, IR, and NMR. Their thermal, mechanical, and surface properties have been evaluated and compared with the homopolyimide and with polyimides where polysiloxane is incorporated in the main chain. DSC revealed melting of the grafted siloxane chain at sub‐ambient temperature and a glass transition corresponding to the main polymer chain at high temperature. Isothermal gravimetric analysis at 350 °C indicated that grafted siloxane moiety can be removed thermally from the polymer chain without affecting the polymer backbone.

  相似文献   


16.
Reaction of 6‐chloronicotinoyl chloride with p‐phenylene diamine resulted in preparation of a dichloro diamide compound. Subsequently, chloro displacement of this compound with 4‐amino phenoxy groups led to production of a new pyridine‐based ether diamine named as N,N′‐(1,4‐phenylene)bis(6‐(4‐aminophenoxy) nicotinamide). Novel polyimide was prepared through polycondensation reaction of the diamine with hexafluoroisopropylidene diphthalic anhydride (6‐FDA) via two‐step imidization method. In addition, new nanoporous polyimide films were produced through graft copolymerization of polyimide as the continuous phase with a thermally labile poly (propylene glycol) oligomer as the labile phase. The grafted copolymers were synthesized using reaction of the diamine and 6‐FDA in the presence of poly (propylene glycol) 2‐bromoacetate as thermally labile constituent via a poly(amic acid) precursor process. The labile block was decomposed via thermal treatment to release inert molecules that diffused out of the matrix to leave pores with diameters between 30 and 60 nm. The structures and properties of polyimide and polyimide nanofoams were characterized by different techniques including 1H‐NMR, FTIR, TGA, DMTA, SEM, TEM, dielectric constant, and tensile strength measurement. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The objective of this research was the preparation of polyimides from 1,2‐bis(p‐dimethylaminophenylimino)alkane homologues and various dianhydrides in N‐methylpyrrolidone by one‐stage polycondensation. The monomers were prepared via condensation of p‐dimethylaminobenzaldehyde and the corresponding diamines, 1,4‐diaminobutane, 1,3‐diaminopropane and 1,2‐diaminoethane. The influence of the incorporation of this moiety into the polymer backbone on the properties of the polyimides has been evaluated. The thermogram of the polyimides indicated that PI‐10 to PI‐32 had Tg values ranging from 181 to 290 °C. The inherent viscosities of the polymers ranged from 0.99 to 2.05 dl g?1, and the highest solubility was obtained without significant loss of the thermal properties. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
Novel phosphorus‐containing polyhedral oligomeric silsesquioxane (POSS)/polyimides (PI) hybrid materials with low dielectric constant and low linear coefficients of thermal expansion (CTE) were prepared and characterized. The POSS/PI hybrid materials were synthesized with octa(aminopropyl)silsesquioxane (OAPS) and a series of phosphorus‐containing polyamide acids(PAA). The PAAs were synthesized with bis(4‐aminophenoxy) phenyl phosphine oxide (BAPPO), 4,4’‐diaminodiphenyl ether (ODA) and 3,3',4,4'‐biphenyl tetracarboxylic diandhydride (BPDA). The structures and properties of the hybrid materials were characterized. And the effect of the phosphorus‐containing structure on the POSS/PI hybrid materials was discussed. The dielectric constants and CTE of the hybrid materials were remarkably lower than that of the unmodified POSS/PI films. The lowest values of dielectric constant and CTE could achieve as low as 2.64 (1 MHz) and 27.45 ppm/K. Besides, the hybrid materials also had excellent thermal properties. The highest 5% weight loss temperature of the hybrid materials was as high as 580°C under air. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42611.  相似文献   

19.
A novel method was developed for the preparation of polyurethane with enhanced thermal stability and electrical insulation properties via the reaction of epoxy‐terminated polyurethane prepolymer (EPU) and poly(amic acid) (PAA). EPUs were synthesized from the reaction of glycidol with NCO‐terminated polyurethane prepolymers, which were prepared from the reaction of polycaprolactone‐based polyol (CAPA) of different molecular weights and some commercially available diisocyanates including hexamethylene diisocyante, toluene diisocyanate, and 4,4′‐methylene bis(phenyl isocyanate). PAA was prepared from the reaction of equimolar amounts of pyromellitic dianhydride and oxydianiline. The effects of PAA content, the nature of diisocyanate, and the molecular weight of CAPA on the mechanical, thermal, thermomechanical, and electrical properties of the final networks were investigated. The crosslink density of the samples was determined according to an equilibrium swelling method using the Flory–Rehner equation and was correlated to the structure of the final polymers. Gel content and activation energy of network formation in the absence and the presence of a tertiary amine catalyst were also studied. The results showed considerable improvement in the thermal, electrical, and mechanical properties compared to those of other common polyurethanes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1776–1785, 2007  相似文献   

20.
A series of novel homo‐ and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5‐bis (4‐aminophenyl) pyridine and 2‐(4‐aminophenyl)‐5‐aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3′, 4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60–9.64 dL/g (c = 0.5 g/dL in DMAC, 30°C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548–598°C in air. The glass transition temperatures of the PMDA‐based samples are in the range of 395–438°C, while the BPDA‐based polyimides show two glass transition temperatures (Tg1 and Tg2), ranging from 268 to 353°C and from 395 to 418°C, respectively. The flexible films possess tensile modulus in the range of 3.42–6.39 GPa, strength in the range of 112–363 MPa and an elongation at break in the range of 1.2–69%. The strong reflection peaks in the wide‐angle X‐ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity. The polymer films are insoluble in common organic solvents exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1844–1851, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号