首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of epoxidized natural rubber (ENR‐50) and processing parameters on the properties of natural rubber/ethylene–propylene–diene rubber (NR/EPDM; 70 : 30 phr) blends were studied. The compounds were prepared by melt compounding method. Using response surface methodology of two‐level full factorial, the effects of ENR‐50 contents (?1 : 5 phr; +1 : 10 phr), mixing temperature (?1 : 50°C; +1 : 110°C), rotor speed (?1 : 40 rpm; +1 : 80 rpm), and mixing time (?1 : 5 min; +1 : 9 min) in NR/EPDM blends were evaluated. Cure characteristics and tensile properties were selected as the responses. The significance of factors and its interaction was analyzed using ANOVA and the model's ability to represent the system was confirmed using the constant of determination, R2 with values above 0.90. It was found that the presence of ENR‐50 has the predominant role on the properties of NR/EPDM blends. The addition of ENR‐50 significantly improved cure characteristics and tensile strength up to 5.12% and 6.48% compared to neat NR/EPDM blends, respectively. These findings were further supported by swell measurement, differential scanning calorimetry, and scanning electron microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40713.  相似文献   

2.
Nanocomposites based on (70/30) blends of natural rubber (NR), styrene‐butadiene rubber (SBR), and organoclay (OC) have been prepared successfully via melt‐mixing process. Effects of the extent of polymers/clay interactions upon the developed microstructure, fatigue life, and dynamic energy loss by the nanocomposites have been investigated. Maleated EPDM (EPDM‐g‐MAH) and epoxidized NR (ENR50) were employed as compatibilizer. Nanocomposites were characterized by means of X‐ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope, atomic force microscopy, root mean square, and dynamic mechanical thermal analysis. EPDM‐g‐MAH showed more potential in enhancing dispersion of the clay nanolayers and their interaction with rubber phases. More potential for separating and dispersing the clay nanoplatelets with better interface enhancement was exhibited by EPDM‐g‐MAH as compatibilizer. This was consistent with higher resistance towards large strain cyclic deformations along with more heat build‐up characteristics showed by EPDM‐g‐MAH based nanocomposites especially at compatibilizer/organoclay ratio of 3. Pronounced non‐terminal behavior within low frequency region was also observed for melt storage modulus of this nanocomposite, indicating higher extent of intercalation/exfoliation microstructure with reinforced interfaces than the nanocomposite generated by ENR50. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Improvement of the properties of rubber nanocomposites is a challenge for the rubber industry because of the need for higher performance materials. Addition of a nanometer‐sized filler such as silicon carbide (SiC) to enhance the mechanical properties of rubber nanocomposites has rarely been attempted. The main problem associated with using SiC nanoparticles as a reinforcing natural rubber (NR) filler compound is poor dispersion of SiC in the NR matrix because of their incompatibility. To solve this problem, rubber nanocomposites were prepared with SiC that had undergone surface modification with azobisisobutyronitrile (AIBN) and used as a filler in blends of epoxidized natural rubber (ENR) and natural rubber. The effect of surface modification and ENR content on the curing characteristics, dynamic mechanical properties, morphology and heat buildup of the blends were investigated. The results showed that modification of SiC with AIBN resulted in successful bonding to the surface of SiC. It was found that modified SiC nanoparticles were well dispersed in the ENR/NR matrix, leading to good filler‐rubber interaction and improved compatibility between the rubber and filler in comparison with unmodified SiC. The mechanical properties and heat buildup when modified SiC was used as filled in ENR/NR blends were improved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45289.  相似文献   

4.
The effect of blend ratio of natural rubber/epoxidized natural rubber (SMR L/ENR 25) and natural rubber/styrene‐butadiene rubber (SMR L/SBR) blends on scorch time (t2), cure time (t90), resilience, hardness, and fatigue properties were studied in the presence of carbon black and silica. An accelerated sulfur vulcanization system was used throughout the investigation. The scorch and cure times of the rubber compound were assessed by using a Moving‐Die Rheometer (MDR 2000). Resilience, hardness, and fatigue life were determined by using a Wallace Dunlop Tripsometer, a Wallace Dead Load Hardness Tester, and a Fatigue to Failure Tester, respectively. The results indicate that t2 and t90 decrease with increasing ENR 25 composition in the SMR L/ENR 25 blend whereas both values increase with increasing SBR content in the SMR L/SBR blend. This observation is attributed to faster cure in ENR 25 and higher saturation in SBR. Resilience decreases with increase in % ENR and % SBR but hardness shows the reverse behavior in their respective blends. The fatigue life increases with % ENR, but it passes through a maximum with % SBR in the respective blends. In all cases, aging lowers the fatigue life, a phenomenon that is caused by the breakdown of crosslinks in the vulcanizate. Differences in all the observed values between carbon black‐filled and silica‐filled blends are associated with the varying degrees of interaction and dispersion of the two fillers in the rubber blend matrix. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 47–52, 2001  相似文献   

5.
N‐Chlorothiosulfonamides have been used to modify ethylene‐propylene‐diene rubber (EPDM) to enhance the compatibility of EPDM in, e.g., natural rubber (NR)/butadiene rubber (BR)/EPDM blends for ozone resistance. N‐Chlorothio‐N‐butyl‐benzenesulfonamide (CTBBS) was selected as a representative for N‐chlorothiosulfonamides. In this study, we found that CTBBS behaves differently with various types of EPDM. Three types of EPDM were selected: ethylidene norbornene (ENB)‐EPDM, hexadiene (HD)‐EPDM, and dicyclopentadiene (DCPD)‐EPDM. HD‐EPDM showed the greatest effectiveness toward CTBBS‐modification. However, this EPDM is not commercially available anymore. On the opposite side, DCPD‐EPDM showed the lowest reactivity so that almost no modification could be realized. The result with ENB‐EPDM was, that upon application of CTBBS to ENB‐EPDM, gelation occurred and, therefore, a low amount of modification was achieved. With the limited modification efficiency for ENB‐EPDM, there is no significant improvement when applying the modified ENB‐EPDM into NR/BR/EPDM blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
This research aimed to investigate the effect of blend ratios on cure characteristics, mechanical and dynamic properties, morphology and automotive fuel resistance of ethylene-propylene diene rubber (EPDM) and epoxidized natural rubber (ENR) blends containing carbon black and calcium carbonate hybrid filler. The composition of EPDM/ENR blends varied were 100/0, 70/30, 50/50, 30/70 and 0/100 %wt/wt. All ingredients used for preparing each blended compound, except for the curatives, were mixed in a kneader. Thereafter, the compound was further mixed with curatives on a two-roll mill and then were vulcanized together with shaped by compression molding before determining cure characteristics, mechanical properties, morphology and weight swelling ratio in three automotive fuels; gasohol-91, diesel and engine oils. The results indicated that Mooney viscosity and cure time of EPDM/ENR blends tended to decrease with increasing ENR content, while cure rate index and crosslink density increased. Tensile strength of all EPDM/ENR blends is lower than that of the individual EPDM and ENR. This is attributed to the incompatibility between nonpolar and polar nature of EPDM and ENR, respectively, supporting by the glass transition temperature form dynamic mechanical thermal analysis (DMTA) and scanning electron micrographs (SEM). Owing to the differences in polarity of automotive fuels and rubbers, weight swelling of EPDM/ENR vulcanizates decreased in diesel and engine oils, but increased in gasohol-91 with increasing in ENR content.  相似文献   

7.
The effects of epoxidized natural rubber (ENR) and maleic anhydride‐grafted polybutadiene (PB‐g‐MA) as compatibilizers to rubber formulations with and without organo‐modified layered silicates are investigated. The physical properties and curing characteristics of composites are studied by moving die rheometer, rubber process analyzer, tensile, tear, and hardness testing. The state of organoclay intercalation was determined by X‐ray diffraction method. The addition of compatibilizers, especially ENR 50, results in further intercalation or exfoliation of the organoclay that increased the clay dispersion in the rubber matrix. ENR 50 with organo‐modified clay improves the physical properties and changes the curing profile. The addition of PB‐g‐MA without organoclay increases the tensile strength (σmax) by increasing the stock viscosity of the rubber compound. Interestingly, simultaneous increase in hardness and σmax is achieved in the presence of both compatibilizers, a characteristic that is difficult to achieve and sometimes required in rubber processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The irradiation‐induced crosslinking in 50/50 poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blend was investigated by means of dynamic mechanical analysis. The influence of trimethylolpropane triacrylate on the irradiation‐induced crosslinking of PVC/ENR blends was also studied. The enhancement in storage modulus and Tg with irradiation dose indicated the formation of irradiation‐induced crosslinks. This is further supported by the decrease in tan δmax and loss modulus peak. The compatibility of the blend was found to be improved upon irradiation. The Fox model was used to provide a further insight into the irradiation‐induced compatibility in the blend. Scanning electron microscopy studies on the cryofracture surface morphology of the blends as well as the homopolymer have been undertaken in order to gain more evidence on the irradiation‐induced crosslinking. © 2001 Society of Chemical Industry  相似文献   

9.
将三元乙丙橡胶(EPDM)与环氧化天然橡胶(ENR)共交联改性后,再与天然橡胶(NR)共混,考察了ENR共交联改性EPDM/NR共混胶的硫化特性、硫化胶的物理机械性能、溶胀指数和耐热空气老化性能,并对该硫化胶进行了差示扫描量热分析。结果表明,EPDM经过ENR共交联改性后与NR共混,ENR共交联改性EPDM/NR共混胶的交联程度明显提高,各相达到了同步交联,硫化胶的综合性能得到了显著改善。  相似文献   

10.
The sorption and diffusion of halogenated hydrocarbon penetrants through different ethylene–propylene–diene terpolymer (EPDM) blends, such as EPDM/natural rubber, EPDM/bromobutyl rubber, and EPDM/styrene butadiene rubber (50/50 w/w), were studied. The diffusion coefficient of halogenated penetrants fell in the range 1.5–14.52 × 10?7 cm2/s in the temperature range of 25–60°C. Transport data were affected by the nature of the interacting solvent molecule rather than its size and also by the structural variations of the EPDM blends. 1,2‐Dichloroethane showed a lower mass uptake compared to other penetrants. The temperature dependence of the transport coefficient was used to estimate the activation parameters, such as the activation energy of diffusion (ED) and the activation energy of permeation (Ep) from Arrhenius plots. The activation parameters for ED of aliphatic chlorinated organic penetrants was in the range 7.27–15.58 kJ/mol. These values fell in the expected range for rubbery polymers, well above their glass‐transition temperature. Also, the thermodynamic parameters, such as enthalpy and entropy, were calculated and fell in the range 2–15 kJ/mol and 3–54 J/mol/K, respectively. Both first‐ and second‐order transport kinetics models were used to investigate the transport kinetics, and first‐order kinetics were followed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1366–1375, 2003  相似文献   

11.
The covulcanization characteristics, mechanical properties, compatibility, and hot‐air aging resistance of hydrogenated nitrile‐butadiene rubber (HNBR)/ethylene‐propylene‐diene rubber (EPDM) blends cured with either sulfur or dicumyl peroxide (DCP) were studied. The difference between MH and ML (MH ? ML), rheometer graphs, selective swelling and a dynamic mechanical analysis of HNBR/EPDM blends confirmed that the peroxide curing system gives better covulcanization characteristics than the sulfur curing system and peroxide exhibited higher crosslink efficiency on EPDM while sulfur showed larger crosslink efficiency on HNBR. Dynamic mechanical analysis and morphology indicated that the compatibility between HNBR and EPDM is limited. Tensile strength and elongation at break of the sulfur‐cured blends are greater than those obtained with peroxide and increase with the HNBR fraction. The blends crosslinked with peroxide retain their tensile strength but not their elongation at break after hot air ageing better than blends vulcanized by sulfur. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The utilization of waste rubber powder in polymer matrices provides an attractive strategy for polymer waste disposal. Addition of recycled acrylonitrile‐butadiene rubber (NBRr) in rubber compounds gives economic (lowering the cost of rubber compounds) as well as processing advantages. In this study, the properties of styrene butadiene rubber (SBR)/NBRr blends with and without epoxidized natural rubber (ENR‐50) as a compatibilizer were determined. The results such as thermal gravimetric analysis (TGA), fatigue life, and natural weathering test of SBR/NBRr blends with and without ENR‐50 were carried out. Results showed that TG thermograms of SBR/NBRr blends with ENR‐50 show lower thermal stability compared blends without ENR‐50. The incorporation of ENR‐50 into SBR/NBRr blends has reduced char residue compared SBR/NBRr blends without ENR‐50. The incorporation of ENR‐50 in SBR/NBRr blends has increased the rigidity of the blends thus lowering the fatigue life. The increment in tensile properties retention of SBR/NBRr blends with ENR‐50 indicated the enhancement on weathering resistant. The surfaces of SBR/NBRr blends with ENR‐50 after 6 months exposure showed a minimal severity of crack compared with SBR/NBRr blends without ENR‐50. It revealed that the scale of cracks has reduced indicating well‐retaining interfacial adhesion between SBR and NBRr with the presence of ENR‐50 as a compatibilizer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The migration of sulfur from natural rubber (NR) compound to the ground waste ethylene‐propylene‐diene monomer (EPDM) rubber phase may have caused the cure incompatibility between these two rubbers. Optimization of accelerators had been adopted to overcome the cure incompatibility in NR/(R‐EPDM) blends as well as to get increased curative distribution. In this study, blends of NR and R‐EPDM were prepared. The effect of accelerator type on curing characteristics, tensile properties, and dynamic mechanical properties of 70/30/NR/(R‐EPDM) blend was investigated. Four types of commercial accelerators were selected [ie, N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , N‐cyclohexyl‐benzothiazyl‐sulfenamide (CBS), tetramethylthiuram disulfide, and 2‐mercaptobenzothiazol]. It was found that the tensile strength of the blends cured in the presence of CBS was relatively higher than the other three accelerators. Scanning electron micrographs of CBS‐cured NR/(R‐EPDM) blends exhibited more roughness and cracking path, indicating that higher energy was required toward the fractured surface. The high crosslinking density observed from the swelling method could be verified from the storage modulus (E′) and damping factor (tan δ) where (tetramethylthiuram disulfide)‐cured NR/(R‐EPDM) blends provided a predominant degree of crosslinking followed by N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , CBS, and 2‐mercaptobenzothiazol, respectively. J. VINYL ADDIT. TECHNOL., 21:79–88, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
A thermally induced shape memory polymer based on epoxidized natural rubber (ENR) was produced by curing the ENR with 3‐amino‐1,2,4‐triazole as a crosslinker in the presence of bisphenol‐A as a catalyst. Dynamic mechanical and tensile analysis was conducted to examine the variation of glass transition temperature, stiffness, and extensibility of the vulcanizates with the amount of curatives. Shape memory properties of the ENR vulcanizates were characterized by shape retention and shape recovery. It was revealed that the glass transition temperature of the ENR vulcanizates could be tuned well above room temperature by increasing the amount of curing agents. Also, ENR vulcanizates with Tg higher than ambient temperature showed good shape memory effects under 100% elongation, and the response temperatures of the recovery were well matched with Tg of the samples. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
Abstract

The most significant factor, which prescribes the enhancement of properties in rubber by the incorporation of nanoclay, is its distribution in the rubber matrix. The study deals with the utilisation of epoxidised natural rubber (ENR) as a polar compatibiliser to achieve better dispersion of nanoclay in non‐polar polymer matrix. Epoxidised natural rubber–nanoclay composites (EC) were prepared by solution mixing. The obtained nanocomposites were incorporated in ethylene propylene diene terpolymer (EPDM) with sulphur as a curing agent. The morphological studies proved the intercalation of nanoclay in ENR, and further incorporation of EC in EPDM matrix leads to exfoliation of nanoclay. Curing study demonstrated faster scorch time, cure time and increase in maximum torque for the nanoclay loaded EPDM compounds compared to pure one. Dynamic mechanical thermal analysis showed increase in storage modulus and lesser damping characteristics for the compounds containing nanoclay loading in EPDM matrix followed by substantial improvement in the overall mechanical properties.  相似文献   

16.
Simple blending of natural rubber/ethylene–propylene–diene rubber (NR/EPDM) generally results in inferior mechanical properties because of curative migration and their differences for filler affinity. In this work, the 70/30 and 50/50 NR/EPDM blends prepared by reactive processing techniques were investigated and compared with the simple, nonreactive blends. The reactive blend compounds were prepared by preheating EPDM, containing all curatives to a predetermined time related to their scorch time prior to blending with NR. For the 70/30 gum blends, four types of accelerators were studied: 2,2‐mercaptobenzothiazole (MBT), 2,2‐dithiobis‐ (benzothiazole) (MBTS), N‐cyclohexyl‐2‐benzothiazolesulfenamide (CBS), and Ntert‐butyl‐2‐benzothiazolesulfenamide (TBBS). When compared with the simple blends, the reactive blends cured with CBS and MBTS showed a clearly improved tensile strength whereas the increase of tensile strength in the blends cured with TBBS and MBT was marginal. However, a dramatic improvement of ultimate tensile properties in the reactive 50/50 NR/EPDM blends cured with TBBS was observed when compared with the simple blend. For the N‐550‐filled blends at the blend ratios of 70/30 and 50/50, the reactive‐filled blends prepared under the optimized preheating times demonstrated superior tensile strength and elongation at break over the simple blends. The improved crosslink and/or filler distribution between the two rubber phases in the reactive blends accounts for such improvement in their mechanical properties. This is shown in the scanning electron micrographs of the tensile fractured surfaces of the reactive blends, which indicate a more homogeneous blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effects of palm oil fatty acid concentration (0, 1, 3, 5, 7 phr) and epoxidation on curing characteristics, reversion and fatigue life of carbon black filled natural rubber compounds have been studied. Three different types of natural rubber, SMR L, ENR 25 and ENR 50 having 0, 25 and 50 mol% of epoxidation and conventional sulphur vulcanization were used. The cure time t90, scorch time t2, MHRML (maximum torque − minimum torque) and fatigue life of all rubbers were found to increase with increasing palm oil fatty acid concentration. However, the reversion of all rubbers decreases with increasing palm oil fatty acid concentration. At similar concentrations of palm oil fatty acid, ENR 50 compounds exhibit the shortest scorch and cure times followed by ENR 25 and SMR L compounds. For reversion, SMR L compounds show the lowest value followed by ENR 50 and ENR 25 compounds, whereas for fatigue life, the highest value is obtained with ENR 50 compounds followed by ENR 25 and SMR L compounds. © 1999 Society of Chemical Industry  相似文献   

18.
Curing characteristics, fatigue, and hysteresis behaviour of feldspar filled SMR L vulcanizates and feldspar filled ENR 50 vulcanizates were studied. Two different types of natural rubber, SMR L and ENR 50 having 0 and 50 mol% of epoxide groups were used. The feldspar filled natural rubber vulcanizates were compared at similar filler loading which were used at 0, 10, 20, and 30 phr of filler loading. The curing characteristics such as scorch time (t 2) and cure time (t 90) slightly increased with increasing feldspar loading for both rubber vulcanizates. Besides t 2 and t 90, maximum torque (M HR) significantly increased for both rubbers with increasing feldspar loading. The fatigue test showed that fatigue life decreased with increasing extension ratio, strain energy and filler loading. As the filler loading increased, the poor wetting of the feldspar by the rubber matrix gave rise to poor interfacial adhesion between filler and rubber matrix. Results also indicate that the vulcanizates with the highest feldspar loading exhibited the highest hysteresis. The feldspar filled SMR L vulcanizates showed higher fatigue life and lower hysteresis compare to feldspar filled ENR 50 vulcanizates.  相似文献   

19.
The distribution of modified and unmodified nanoclays inside the rubber phases of immiscible rubber–rubber blends composed of nonpolar–polar natural rubber (NR)/epoxidized natural rubber (ENR) and nonpolar–nonpolar NR/polybutadiene rubber (BR) was investigated for the first time. The distribution of clays at various loadings in the blends was calculated from the viscoelastic properties of the blends. For example, in the 50 : 50 NR/ENR blend, 42% Cloisite 30B migrated to the NR phase, and 58% went to the ENR phase. However, in the same blend, only 7% Cloisite Na+ was found in the NR phase, and 93% was found in the ENR phase. Again, in the 50 : 50 NR/BR blends, the NR phase contained 85% Cloisite 30B, whereas 55% Cloisite Na+ migrated to the NR phase. All these observations were explained with the help of viscosity, X‐ray diffraction, and morphology analyses. The effect of the distribution of the clay on the mechanical properties was also discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Epoxidized natural rubbers (ENRs) were prepared. ENRs with different concentrations of up to 20 wt % were used as modifiers for epoxy resin. The epoxy monomer was cured with nadic methyl anhydride as a hardener in the presence of N,N‐dimethyl benzyl amine as an accelerator. The addition of ENR to an anhydride hardener/epoxy monomer mixture gave rise to the formation of a phase‐separated structure consisting of rubber domains dispersed in the epoxy‐rich phase. The particle size increased with increasing ENR content. The phase separation was investigated by scanning electron microscopy and dynamic mechanical analysis. The viscoelastic behavior of the liquid‐rubber‐modified epoxy resin was also evaluated with dynamic mechanical analysis. The storage moduli, loss moduli, and tan δ values were determined for the blends of the epoxy resin with ENR. The effect of the addition of rubber on the glass‐transition temperature of the epoxy matrix was followed. The thermal stability of the ENR‐modified epoxy resin was studied with thermogravimetric analysis. Parameters such as the onset of degradation, maximum degradation temperature, and final degradation were not affected by the addition of ENR. The mechanical properties of the liquid‐natural‐rubber‐modified epoxy resin were measured in terms of the fracture toughness and impact strength. The maximum impact strength and fracture toughness were observed with 10 wt % ENR modified epoxy blends. Various toughening mechanisms responsible for the enhancement in toughness of the diglycidyl ether of the bisphenol A/ENR blends were investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39906.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号