首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
BACKGROUND: Electrospinning of natural polymers offers a promising approach to generate nanofibers with a similar fibrillar structure to that of native extracellular matrix. In the present work, zein/silk fibroin (SF) blends were electrospun with formic acid as solvent to fabricate bicomponent nanofibrous scaffolds for biomedical applications. RESULTS: The zein/SF electrospun nanofibers had a smaller diameter and narrower diameter distribution than pure zein nanofibers, and the average diameter gradually decreased from 265 to 230 nm with increasing SF content in the blend. The predominant presence of α‐helix zein structure and random coil form of silk I in blend fibrous membranes was confirmed from Fourier transform infrared spectral and wide‐angle X‐ray diffraction data, while conversion to the β‐sheet structure of SF was also detected. The tensile strength of the zein/SF fibrous membranes was improved as the content of SF in the blend fibers increased. A preliminary study of in vitro degradation and cytotoxicity evaluated by MTT assay indicated that biodegradable zein/SF fibrous membranes did not induce cytotoxic effects in an L929 mouse fibroblast system. CONCLUSION: Biodegradable zein/SF fibrous membranes with good mechanical properties and cytocompatibility combine the beneficial characteristics of the individual components and may be useful for biomedical applications. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Poly(?‐caprolactone) (PCL) is explored in tissue engineering (TE) applications due to its biocompatibility, processability, and appropriate mechanical properties. However, its hydrophobic nature and lack of functional groups in its structure are major drawbacks of PCL‐based scaffolds limiting appropriate cell adhesion and proliferation. In this study, silk fibroin (SF) was immobilized on the surface of electrospun PCL nanofibers via covalent bonds in order to improve their hydrophilicity. To this end, the surface of PCL nanofibers was activated by ultraviolet (UV)–ozone irradiation followed by carboxylic functional groups immobilization on their surface by their immersion in acrylic acid under UV radiation and final immersion in SF solution. Furthermore, morphological, mechanical, contact angle, and Attenuated total reflection‐ Fourier transform infrared (ATR‐FTIR) were measured to assess the properties of the surface‐modified PCL nanofibers grafted with SF. ATR‐FTIR results confirmed the presence of SF on the surface of PCL nanofibers. Moreover, contact angle measurements of the PCL nanofibers grafted with SF showed the contact angle of zero indicating high hydrophilicity of modified nanofibers. In vitro cell culture studies using NIH 3T3 mouse fibroblasts confirmed enhanced cytocompatibility, cell adhesion, and proliferation of the SF‐treated PCL nanofibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46684.  相似文献   

3.
Silk fibroin (SF)/gelatin blend nanofibers membranes as scaffolds were fabricated successfully via electrospinning with different composition ratios in formic acid. The formation of intermolecular hydrogen bonds and the conformational transition of SF provided scaffolds with excellent mechanical properties. FTIR and DTA analysis showed the SF/gelatin nanofibers had more β‐sheet structures than the pure SF nanofibers. The former's breaking tenacity increased from 0.95 up to 1.60 MPa, strain at break was 7.6%, average fiber diameter was 89.2 nm, porosity was 87%, and pore diameter was 142 nm. MTT, H&E stain, and SEM results showed that the adhesion, spreading, and proliferation of human umbilic vein endothelium cells (HUVECs) and mouse fibroblasts on the SF/gelatin nanofibers scaffolds were definitely better than that on the SF nanofibers scaffolds. The scaffolds could replace the natural ECM proteins, support long‐term cell growth, form three‐dimensional networks of the nanofibrous structure, and grow in the direction of fiber orientation. Our results prove that the addition of gelatin improved the mechanical and biological properties of the pure SF nanofibers, these SF/gelatin blend nanofiber membranes are desirable for the scaffolds and may be a good candidate for blood vessel engineering scaffolds. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Won Ho Park  Lim Jeong  Sam Hudson 《Polymer》2004,45(21):7151-7157
The electrospinning of silk fibroin(SF)/chitosan(CS) blends with different composition ratios was performed with formic acid as a spinning solvent. The SF/CS blends containing up to the CS content of 30% could be electrospun into the continuous fibrous structure, although pure CS was not able to be electrospun into the fibrous structure. As-spun SF/CS blend nanofibers showed smaller diameter and narrower diameter distribution than pure SF nanofibers, and the diameter gradually decreased from 450 to 130 nm with the addition of CS in blends. However, at the blend compositions with above 40 wt% chitosan, the continuous SF nanofibers containing CS beads were produced. We also investigated the influence of the methanol treatment on the secondary structure of as-spun SF or SF/CS blend nanofibers by means of ATR-IR and solid-state CP-MAS 13C-NMR. Comparing with the pure SF nanofibers, the conformational change of the as-spun SF/CS blend nanofibers into β-sheet was faster because the CS with rigid backbone synergistically might promote the conformational transition of SF by an intermolecular interaction.  相似文献   

5.
Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.  相似文献   

6.
Silk fibroin from Bombyx mori silk cocoons was electrospun into silk nanofibers (SNFs). SEM images show that 9% w/v of SNFs was smooth and beadless having an average diameter in the range 30–150 nm. Curcumin (0.5–1.5 wt%) was incorporated into the silk fibroin solution and electrospun to obtain curcumin incorporated silk nanofibers (CSNFs) with diameters between 50 and 200 nm. The dispersion of curcumin in the SNFs was confirmed by TEM. The amorphous nature of curcumin upon incorporation into SNFs was confirmed by XRD. The functional groups of SNF and CSNF were confirmed by Fourier transform infrared spectroscopy. The SNFs and CSNFs were thermally stable up to ca 350 °C as evidenced by TGA. The glass transition temperature (Tg) of SNFs (168 °C) increased to 184 °C in the case of CSNFs as confirmed by DSC. The storage modulus, loss modulus and tan δ were determined by dynamic mechanical analysis. The percentages of porosity and water uptake of SNFs were 85% and 150%, respectively. The percentage in vitro cumulative release of curcumin at the end of the tenth day for 0.5, 1 and 1.5 wt% formulations was 82%, 84% and 80%, respectively. © 2013 Society of Chemical Industry  相似文献   

7.
Shell wastes represent a considerable quantity of byproducts in the coastal area. From the viewpoint of ecofriendly and economical disposal, shell wastes are dissolved in formic acid to prepare an ionic liquid at room temperature and dissolve silk fibers to prepare a spinning solution. In this study, we developed conductive filaments made of silk fibroin (SF) and polyaniline (PANI) with wet-spinning techniques and a water coagulation bath. We then evaluated its surface morphologies and structural, mechanical, and electrical properties. The average diameters of the SF–PANI filaments increased with SF concentration from 8.0 to 14.0 wt % when PANI content was 0.1 wt %. The structure of SF–PANI filaments included the coexistence of silk I and silk II and was not affected by the addition of PANI. Moreover, the stress and strain of the SF–PANI filament were 4.46 ± 0.57 MPa and 16.18 ± 2.35%, respectively. After three drafts, the stress and strain of the SF–PANI filaments reached their maxima: 22.08 ± 0.2 MPa and 63.2 ± 2.56%, respectively. In addition, the electrical properties of the SF–PANI filaments increased with the addition of PANI. Thus, all data in this study suggest that recycled shell wastes can be reused as dissolution systems to prepare SF-based functional conductive filaments. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47127.  相似文献   

8.
Three‐dimensional (3D) chitosan/silk fibroin (CS/SF) porous composite scaffolds have been prepared by simply coating a thin layer of CS onto spunlaced SF scaffolds via hydrogen‐bonding assembly technique, and they were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X‐ray diffraction (XRD), and mechanical property measurements. The results show that porous scaffolds have a pore diameter around 50–200 μm, and improved mechanical property compared with SF, resulting from strong intermolecular hydrogen bonding interactions between CS and SF, together with the maintained β‐sheet structure of SF. The medical and biological properties of the composite scaffolds were further evaluated. The results demonstrate that they possess good biocompatibility and a broad spectrum of antimicrobial properties. The in vivo animal experiments show that the composite scaffolds promote skin regeneration of rats without any teratogenic effect and inflection, thus they are very promising in the application of wound dressings. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42503.  相似文献   

9.
Developing biologically mimetic nanofibers (NFs) is crucial for their applications as scaffolds in tissue engineering and drug carriers. Herein, we present a strategy to facilely fabricate core-sheath NFs using coaxial electrospinning technique. Poly(ε-caprolactone) (PCL) and silk fibroin (SF) were employed as component materials to construct PCL/SF NFs with PCL cores uniformly encapsulated by SF sheaths. Scanning electron microscopy and transmission electron microscopy demonstrate a uniform core-sheath structure of the coaxial NFs. The engineered core-sheath structure confers the composite NFs with greatly improved properties including surface hydrophilicity and mechanical properties. In vitro cell culture validates that the core-sheath NFs are favorable to the cultured rat pheochromocytoma cells (PC 12) attachment. To further demonstrate the advantage of the coupled structural integrity, the PCL/SF core-sheath NFs were compared with the NFs produced from PCL and SF blend. Results showed that the PCL/SF NFs possessed a tensile strength of ~6.93 ± 0.52 MPa and an elongation at break of ~294.31 ± 24.17%, whereas the blend NFs possessed ~5.55 ± 0.50 MPa and ~88.05 ± 13.98%, respectively. Dexamethasone-phosphate sodium (DEX) was employed as a model drug, whereby the in vitro release study indicates that the NFs exhibit an ideal releasing profile, capable of releasing DEX continuously over a period of 450 h. The constructed PCL/SF core-sheath NFs are promising candidates for biomedical applications. POLYM. ENG. SCI., 60:802–809, 2020. © 2020 Society of Plastics Engineers  相似文献   

10.
Many synthetic scaffolds have been used as vascular substitutes for clinical use. However, many of these scaffolds may not show suitable properties when they are exposed to physiologic vascular environments, and they may fail eventually because of some unexpected conditions. Electrospinning technology offers the potential for controlling the composition, structure, and mechanical properties of scaffolds. In this study, a tubular scaffold (inner diameter = 4.5 mm) composed of a polylactide (PLA) fiber outside layer and a silk fibroin (SF)–gelatin fiber inner layer (PLA/SF–gelatin) was fabricated by electrospinning. The morphological, biomechanical, and biological properties of the composite scaffold were examined. The PLA/SF–gelatin composite tubular scaffold possessed a porous structure; the porosity of the scaffold reached 82 ± 2%. The composite scaffold achieved the appropriate breaking strength (1.28 ± 0.21 MPa) and adequate pliability (elasticity up to 41.11 ± 2.17% strain) and possessed a fine suture retention strength (1.07 ± 0.07 N). The burst pressure of the composite scaffold was 111.4 ± 2.6 kPa, which was much higher than the native vessels. A mitochondrial metabolic assay and scanning electron microscopy observations indicated that both 3T3 mouse fibroblasts and human umbilical vein endothelial cells grew and proliferated well on the composite scaffold in vitro after they were cultured for some days. The PLA/SF–gelatin composite tubular scaffolds presented appropriate characteristics to be considered as candidate scaffolds for blood vessel tissue engineering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
In this work, the regenerated silk protein with multiwalled carbon nanotubes (MWNT) was successfully electrospun in formic acid to generate the hybrid silk nanofibers. The morphology, structure and mechanical properties of the resulting silk/MWNT hybrid nanofibers were characterized using field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FI-IR), Raman spectroscopy, wide angle X-ray diffraction (WAXD) and tensile testing. Thermo analysis was also carried out. TEM results confirmed that MWNT were well incorporated into the silk fibers. Addition of MWNT into silk nanofibers resulted in an enhanced mechanical property depending on MWNT content.  相似文献   

12.
常规静电纺丝法制得的丝素蛋白纤维毡的力学性能较差,不能很好地满足人体对生物组织工程支架的要求。为了提高丝素蛋白组织工程支架的力学性能,对丝素蛋白纤维毡进行增强改性是目前研究的热点。文章简要介绍了丝素蛋白的结构和性能及其在组织工程领域的应用研究,重点总结了提高静电纺丝素蛋白纤维毡力学性能的3种方法,即后处理、添加增强组分以及制备取向纳米纤维。  相似文献   

13.
Qingqing Yuan 《Polymer》2010,51(21):4843-4849
An all-silk composite, in which uniaxially-aligned and continuous-typed Bombyx mori silk fibers were embedded in a matrix of silk protein (fibroin), was successfully prepared via a solution casting process. The structure, morphology, mechanical and thermal properties of such silk fiber/fibroin composites were investigated with X-ray diffraction, scanning electron microscopy, tensile and compression tests, dynamic mechanical analysis and thermogravimetric analysis. The results demonstrated that the interface adhesion between silk fiber and the fibroin matrix was enhanced by controlling the fiber dissolution through 6 mol L−1 LiBr aqueous solution. Compare to those of the pure fibroin counterparts, the overall mechanical properties as well as the thermal stability of such silk fiber/fibroin composites were significantly improved. For example, the composite with 25 wt% fibers showed a breaking stress of 151 MPa and a breaking elongation of 27.1% in the direction parallel to the fiber array, and a compression modulus of 1.1 GPa in the perpendicular direction. The pure fibroin matrix (film), on the other hand, typically had a breaking stress of 60 MPa, a breaking elongation of 2.1% and a compression modulus of 0.5 GPa, respectively. This work suggests that such a controllable technique may help in the preparation of animal silk based materials with promising properties for various applications.  相似文献   

14.
The native extracellular matrix (ECM) is composed of a cross-linked porous network of multifibril collagens and glycosaminoglycans. Nanofibrous scaffolds of silk fibroin (SF) and hydroxybutyl chitosan (HBC) blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and trifluoroacetic acid (TFA) as solvents to biomimic the native ECM via electrospinning. Scanning electronic microscope (SEM) showed that relatively uniform nanofibers could be obtained when 12% SF was blended with 6% HBC at the weight ratio of 50:50. Meanwhile, the average nanofibrous diameter increased when the content of HBC in SF/HBC blends was raised from 20% to 100%. Fourier transform infrared spectra (FTIR) and (13)C nuclear magnetic resonance (NMR) showed SF and HBC molecules existed in hydrogen bonding interactions but HBC did not induce conformation of SF transforming from random coil form to β-sheet structure. X-ray diffraction (XRD) confirmed the different structure of SF/HBC blended nanofibers from both SF and HBC. Thermogravimetry-Differential thermogravimetry (TG-DTG) results demonstrated that the thermal stability of SF/HBC blend nanofibrous scaffolds was improved. The results indicated that the rearrangement of HBC and SF molecular chain formed a new structure due to stronger hydrogen bonding between SF and HBC. These electrospun SF/HBC blended nanofibers may provide an ideal tissue engineering scaffold and wound dressing.  相似文献   

15.
Chang Seok Ki  In Chul Um  Young Hwan Park   《Polymer》2009,50(19):4618-4625
Although silk sericin (SS) occupies 25% of silk protein, its importance has often been overlooked in the natural silk spinning process and in the formation of the crystalline structure of silk fibroin (SF). In this study, we elucidated the role of SS in the crystallization process of SF under shear using SF/SS blend solutions. In order to apply shear stress to the blend solution, a rotating glass rod was inserted into a glass tube filled with the solution and the shear rate was determined to be in the range of 598–724 s−1. After shearing, SF aggregates were formed and the amount of the aggregates increased with shearing time. Additionally, it was observed that the aggregate formation and β-sheet transition of SF were enhanced when a proper amount of SS was in the blend solution. Consequently, the SS considerably contributes to the structural transition of SF under shear. The SS can improve the shear-induced β-sheet transition and crystallization of SF.  相似文献   

16.
In this study, graphene oxide-sliver nanoparticle (GO-AgNP) composite was synthesized in situ with GO as the raw material. Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, and scanning electron microscopy were used to characterize the composite, the spherical Ag particles with a diameter of about 36 nm were well deposited on the surface of GO nanosheets without serious agglomeration, and the antibacterial properties of the composites were also tested. Moreover, the silk fibroin (SF)/gelatin (GT) electrospun nanofiber film was prepared by electrospinning, and the structure of the SF nanofiber film was observed using a Fourier transform infrared spectrometer, X-ray diffractometer, and scanning electron microscope. The TGA curves indicated that the total weight loss rate of SF nanofibers at 400°C was significantly higher than that of SF/GT composite nanofibers (74.72% for pure SF, 62.37% for SF/GT nanocomposites). Finally, the GO-AgNP composite was combined with electrospinning SF film, which resulted in the decrease in surface roughness from 393.5 ± 123.7 nm to 109.9 ± 24.43 nm and the decrease in contact angle from 82.48° to 54.78°. Besides, the GO-AgNP composites enhanced the antibacterial performance of SF film greatly, which was conducive to its application in biological tissue engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47904.  相似文献   

17.
In this article, the electrospun silk fibroin (SF) fibers with an average diameter of 700 nm were prepared from a concentrated aqueous solution with an electrospinning technique. The morphology, conformation, and crystalline structure of the SF fibers were characterized by scanning electron microscopy, Raman spectroscopy, and wide‐angle X‐ray diffraction, respectively. The structure and morphology of the fibers were strongly influenced by the solution concentration and the processing voltage. In addition, the fiber formation parameters, including spinning velocity, elongation rate, and draw ratio, were also calculated. A kind of SF fiber with a structure between an amorphous film and a natural silk was found. We suggest that the high draw ratio was not the only factor in the transformation of SF from random‐coil and α‐helix conformations to a β‐sheet conformation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 961–968, 2006  相似文献   

18.
Magnetically responsive polymer composites have great potential for use in diverse biomedical applications. In this study, composite biomaterials consisting of silk fibroin (SF) and superparamagnetic iron oxide nanoparticles (SPIONs) were fabricated by the electrospinning method. Two different methods were employed to incorporate the SPIONs into the SF nanofibers. In the first encapsulation method (M1), SPIONs (1.0, 3.0, and 5.0 wt%) were initially included in the electrospinning solution. In the second dip-coating method (M2), electrospun SF nanofiber mats were immersed in the aqueous suspensions of SPIONs (10, 30 and 50% v/v). Then, the pure and composite silk fibroin composite mats were comparatively evaluated for their morphological, chemical, magnetic, mechanical and in vitro biological properties, by using a number of methods including SEM, TEM, FTIR, XRD, EDS, VSM, TGA, mechanical tensile tests, as well as by indirect in vitro cytotoxicity and in vitro hemocompatibility analyses. Overall findings suggested that, while M1 nanofiber mats could be a suitable candidate for use in tissue engineering as a magnetically responsive cytocompatible scaffold, the M2 nanofiber mats perhaps could be more appropriate as an interface for triggering the in vitro stem cell differentiation and/or biosensor applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48040.  相似文献   

19.
To engineer tissue restoration, it is necessary to provide a bioactive, mechanically robust scaffold. Electrospun poly(ε‐caprolactone) (PCL) nanofiber is a promising biomaterial candidate with excellent mechanical properties, but PCL scaffolds are inert and lack natural cell recognition sites. To overcome this problem we investigated the incorporation of Antheraea pernyi silk fibroin (ASF) containing inherent RGD tripeptides with PCL in electrospinning process. The mixing ratios showed remarkable impact on the properties of hybrid nanofibers. Increasing PCL content significantly enhanced the mechanical properties of nanofibers. In particular, the mechanical properties were remarkably enhanced when PCL content increased from 50 wt% to 70 wt%. Moreover, the biological assays based on endothelial cells showed promoted cell viability when ASF content reached to 30 wt%. The data demonstrated that the nanofiber containing 70% of PCL and 30% of ASF achieved the most balanced performances for integrating the mechanical properties of PCL and the bioactivity of ASF. Furthermore, biomimetic alignment of 70PCL/30ASF nanofibers was achieved, which could support PC12 neuron‐like cell growth and guide neurite outgrowth, providing a potentially useful option for the engineering of oriented tissues. The results show that the PCL/ASF hybrid nanofibers can be considered as a promising candidate for tissue engineering scaffolds. POLYM. ENG. SCI., 57:206–213, 2017. © 2016 Society of Plastics Engineers  相似文献   

20.
Flexible silk fibroin gel‐like films with microporous morphology were prepared from B. mori silk fibroin fibers directly solubilized in formic acid/CaCl2 solvent. These films were characterized by several analysis techniques to determine the structure and properties of films. The pore size of gel‐like films can be adjusted through SF concentration and Ca ions concentration. The controllable pore size in gel‐like films was grew from 3–5 μm to 100 μm under the increase of fibroin concentration from 1.0 wt % to 8.0 wt %. At the same time, the water content of silk fibroin gel‐like film decreased from 83.5 ± 3.4% to 68.2 ± 2.6%. With increasing Ca ions contents from 2.0 wt % to 10.0 wt % in dissolution process, the pore size and water content of silk fibroin gel‐like films grew larger, especially its water content values reached 86.2 ± 4.0% at 10.0 wt % Ca ions concentration. At wet condition, the gel‐like film with β‐sheet structure showed higher breaking stress (4.26 ± 0.31 MPa) and elongation (45.45 ± 15.79%) at 8.0 wt % concentration. With the preparation method, the membrane is hydrophilic and the pore size is adjustable, which contributes to high toughness and favorable cell growth environment, suggesting that these silk fibroin gel‐like films can be a potential candidate scaffold for biomedical applications, such as wound dressing, facial mask, contact lenses, etc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41842.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号