首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation, microstructure and properties of high-density TiN/Ti5Si3 ceramic composites created by the pyrolysis of preceramic polymer with filler were investigated. Methylpolysiloxane was mixed with TiH2 as filler and ceramic composites prepared by pyrolysis at 1200°C to 1600°C under N2, Ar and vacuum were studied. When a specimen with 70 vol.% TiH2 was pyrolyzed up to 1600°C in a vacuum after a preheat treatment at 850°C in a N2 atmosphere and subsequently heat-treated at 1600°C for 1 h under Ar at a pressure of 2 MPa, a ceramic composite with full density was obtained. The microstructure of the ceramic composite was composed of TiN and Ti5Si3 phases. Under specific pyrolysis conditions, a ceramic composite with a density of 99.2 TD%, a Vickers hardness of 18 GPa, a fracture toughness of 3.5 MPam1/2, a flexural strength of 270 MPa and a electrical conductivity of 6200 ohm−1·cm−1 was obtained.  相似文献   

2.
In an investigation of the creep properties of silicon nitride/silicon carbide nanocomposites, the micro-nano type composites with nano-SiC at intragranular and inter-granular regions show behavior not much different from that of silicon-nitride monolith. The improvement of creep resistance is modest, up to about one order of magnitude decrease in steady-state creep rate. The creep rate parameters such as activation energy and stress exponent measured for this type of nanocomposite are within the range of those of silicon nitride. This evidence suggests that a special strengthening mechanism may not be necessary for this type of material. Nano-nanocomposites show remarkably lower creep rates, possibly pointing to a new creep mechanism such as solid-state diffusion. For more information, contact A.K. Mukherjee, University of California-Davis, Department of Chemical Engineering and Materials Science, Davis, CA 95616; e-mail akmukherjee@ucdavis.edu.  相似文献   

3.
Ti3AlC2 has the properties of ceramics and metals. These excellent properties indicate that Ti3AlC2 is a very promising material to extensive applications. Ti3AlC2 ceramic material was prepared by mechanical alloying. The effects of milling time and sintering temperature on the fracture, microstructure and mechanical properties of Ti3AlC2 ceramic material were analyzed by laser particle analyzer, X-ray diffraction, and scanning electron microscopy. The experimental results showed that Ti3AlC2 had the best comprehensive properties after the composite powder was milled for 3 h and sintered at 1630°C for 2 h. The relative density, bending strength, and hardness of the sample reached 92.23%, 345.2 MPa, and HRA 34.1, respectively. The fracture surface indicated that the fracture of the material belonged to ductile rapture.  相似文献   

4.
A nitride, believed to be SiN,, has been separated from three nitrided silicon steels. Germanium nitride, GeN,, has been prepared from pure germanium. Comparison of the diffraction patterns indicates that the two nitrides are isomorphous; an orthorhombic structure is suggested in place of the rhombohedral structure previously reported for Ge3N4.  相似文献   

5.
Microstructures of Ti50Al45Mo5 (at.%) alloy powders produced by the plasma rotating electrode process (PREP) were investigated. The powders have inhomogeneous structures, which consist of dendrites and rounded grains. The dendrites, which show a “rosettelike” morphology, are formed on the powder surface and around the rounded grains. The rosettelike dendrites are of hexagonal α 2 (D019) phase even though the dendrites have an equiaxial morphology, and a small amount of β 2 (B2) phase is also contained inside. It is suggested that the solidification to α (hcp-A3) phase occurred by the peritectic reaction between the primary β (bcc-A2) dendrites and the liquid: L+β→L+β+α. The rounded grains, on the other hand, are of β 2 phase in which acicular α or α 2 laths are precipitated with the Burgers orientation relationship. Antiphase domain boundaries in the β 2 matrix are intersected by α(α 2) laths. It is interpreted that the α(α 2) laths were formed by the solid-state transformations: β 2β 2+αβ 2+α 2. The formation of the two different microstructures in the powder particles is rationalized in terms of the changes in local composition of the liquid phase during the rapid solidification process.  相似文献   

6.
The oxidation behaviour of Ti3(Ni,Cr)3CrSi6 and Ti4Ni4Si7 was studied in air both at 1000 and 1100 °C. The formation of the oxidation products and the phase transformation were characterized by in situ X-ray diffraction and SEM-FEG post-mortem observations. The crystal structure of Ti3(Ni,Cr)3CrSi6 was also determined using powder X-ray diffraction and Rietveld refinement in order to describe this phase as a pseudolamellar structure comparable to the one of Ti4Ni4Si7. Results evidenced that diffusion in solid state governs the oxidation rate of these silicides. Ti4Ni4Si7 oxidation rate was assessed as being one order of magnitude lower than the one of Ti3(Ni,Cr)3CrSi6, while this latter readily transformed into Ti4Ni4Si7 during the first time of oxidation. The understanding of this particular behaviour in which the oxidation rate of Ti3(Ni,Cr)3CrSi6 was not affected by the phase transformation implied to consider the crystallographic lamellar features of these compounds that play a major role in the diffusion of the most oxidizable elements.  相似文献   

7.
The Ni3Al matrix self-lubricating composite was fabricated by powder metallurgy technique. The tribological behavior of the composite sliding against commercial Si3N4, SiC and Al2O3 ceramic balls was investigated from 20 to 1000 °C. It was found that the composite demonstrated excellent lubricating properties with different friction pairs at a wide temperature range, which can be attributed to the synergetic effect of Ag, fluorides, and molybdates formed by oxidations. The Ni3Al matrix self-lubricating composite/Si3N4 couple possessed the stable friction coefficient and wear rate.  相似文献   

8.
The hydrogen capacity of (Ti, Nb)3Al titanium aluminides subjected to mechanical activation in a hydrogen atmosphere has been studied. It has been shown that the application of this procedure allows one to prepare thermally unstable titanium aluminide (Ti3Al) hydrides with a high hydrogen content (to 2.6 wt %) at room temperature and normal pressure; in this case, no special requirements for the hydrogen purity are placed. The thermally unstable nanostructured Ti3Al hydrides were found to exhibit a higher hydrogen mobility as compared to that of the microcrystalline hydrides. Low niobium additions (to 2.1 at %) have been found to decrease the hydrogen capacity. Experiments on the preparation of bulk samples from the hydride powders obtained were performed.  相似文献   

9.
Nano-powders of Ti3Al and 2Al2O3 were synthesized from 3TiO2 and 5Al powders by high energy ball milling. Nanocrystalline Al2O3 reinforced composite was consolidated by high frequency induction heated sintering within 2 minutes from mechanochemically synthesized powders of 2Al2O3 and Ti3Al. The relative density of the composite was 99.5%. The average hardness and fracture toughness were 1340 kg/mm2 and 8 MPa·m1/2, respectively.  相似文献   

10.
Li1.3Al0.3Ti1.7(PO4)3 pellets sintered with different mole fractions of LiBO2 were prepared by sol-gel method. The structural identification, surface morphology, ionic conductivity, and activation energy of the pellets were studied by X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The results show that all the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered with different mole fractions of LiBO2 have similar X-ray diffraction patterns. The sintered pellet becomes denser and the boundary and corner of the particles become illegible with the increase of LiBO2. Among the Li1.3Al0.3Ti1.7(PO3)4 pellets sintered with different mole fractions of LiBO2, the one sintered with 1 mol% LiBO2 shows the highest ionic conductivity of 3.95×10−4 S.cm−1 and the lowest activation energy of 0.2469 eV.  相似文献   

11.
Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 was prepared by wet chemical route. The phase, surface morphology, and electrochemical properties of the prepared powders were characterized by X-ray diffraction, scanning electron micrograph, and galvanostatic charge-discharge experiments. Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 has similar X-ray diffraction patterns as LiMn2O4. The corner and border of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 particles are not as clear as the uncoated one. The two powders show similar values of lithium-ion diffusion coefficient. When cycled at room temperature and 55°C for 40 times at the charge-discharge rate of 0.2C, Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 shows the capacity retentions of 98.2% and 93.9%, respectively, which are considerably higher than the values of 85.4% and 79.1% for the uncoated one. Both the capacity retention differences between Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 and LiMn2O4 cycling at room temperature and 55°C become larger with the increase of charge-discharge rate. When the charge-discharge rate reaches 2C, the capacity retention of LATP-coated LiMn2O4 becomes 8.4% higher than the uncoated LiMn2O4 for room temperature cycling, and it becomes 11.1% higher than the latter when cycled at 55°C.  相似文献   

12.
Observations are presented on the initiation and growth of Al2O3/Al composites by the directed melt oxidation of Al-Si alloys containing metallic Zn or using external dopant ZnO. Thermal gravimetric analysis, optical microscopy, and x-ray diffraction analysis were employed to characterize the progress of oxidation and the nature of oxidation products. Both Zn and ZnO dopants were able to initiate the directed melt oxidation of Al-Si alloys without any Mg being present. Al2O3/Al composites were produced when the alloying Zn concentration exceeding 3 wt.%. The incubation period of the oxidation process for Al-Si-Zn alloys was shortened markedly and the amount of composite products increased with the increasing of Zn content in the alloy. In addition, doping with ZnO powder resulted in dense composite formation. A macroscopically planar surface and a fine microstructure promote oxidation growth in Al2O3/Al composites. Doping with ZnO powder offers a significant advantage over using metallic Zn for the directed melt oxidation of Al-Si alloy.  相似文献   

13.
Si3N4/h-BN ceramic matrix composites were prepared via a catalytic reaction-bonding route by using ZrO2 as nitridation catalyst, and the water quenching (fast cooling) and molten aluminum quenching tests (fast heating) were carried out to evaluate the thermal shock resistance of the composites. The results showed that the thermal shock resistance was improved obviously with the increase in h-BN content, and the critical thermal shock temperature difference (ΔT c) reaches as high as 780 °C when the h-BN content was 30 wt.%. The improvement of thermal shock resistance of the composites was mainly due to the crack tending to quasi static propagating at weak bonding interface between Si3N4 and h-BN with the increase in h-BN content. For the molten aluminum quenching test, the residual strength showed no obvious decrease compared with water quenching test, which could be caused by the mild stress condition on the surface. In addition, a calculated parameter, volumetric crack density (N f), was presented to quantitative evaluating the thermal shock resistance of the composites in contrast to the conventional R parameter.  相似文献   

14.
In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.  相似文献   

15.
The efficiency of the magnetic-anisotropy induction in the Fe5Co72Si15B8 amorphous alloy during its thermomechanical treatment and the thermal stability of the anisotropy are shown to depend on the structural state of the alloy. Structural inhomogeneities (microinhomogeneities and preprecipitates) formed in the structure of the amorphous alloy upon annealing at 350–430°C increase both the efficiency of the magnetic-anisotropy induction in the course of subsequent heat treatment at 290°C combined with tensile deformation and the thermal stability of the anisotropy.  相似文献   

16.
Fe-based nanocrystalline powder sheets with dielectric TiO2 powder additives were investigated to improve the characteristics of electromagnetic (EM) wave absorption. The amorphous ribbons of Fe73Si16B7Nb3Cu1 (at.%) alloys were prepared by a planar flow casting (PFC) process, and the ribbons were pulverized using an attrition mill. Fe-based flake powder crystallized at 550°C for 1h was mixed with a nano-sized and a micro-sized TiO2 powder. The powder mixtures were then tape-cast with binders to become EM wave-absorbing sheets. The absorbing properties of the fabricated sheet sample, such as complex permittivity and permeability, were measured by a network analyzer. The properties of EM wave absorption improved with the increase of TiO2 powder in the mixture. The mixture with micro-sized TiO2 powder was a little more effective in causing power loss of EM waves than the mixture with nano-sized TiO2 powder.  相似文献   

17.
The magnetoelectric (ME) effect in two- and three-layered composites made up of polarized ceramic plates of lead zirconate-titanate PbZr0.53Ti0.47O3 (PZT) and manganese-zinc ferrite Mn0.4Zn0.6Fe2O4 (MZF) has been studied. Dependences of the transverse ME voltage coefficient (α31) on the magnetostrictive layer thickness and the magnetic field intensity and frequency have been established. The mechanical coupling coefficient of the composite plates has been estimated. Results obtained for two-layered PZT-MZF structures have been analyzed using the method of efficient medium parameters.  相似文献   

18.
CaTiO3 was decomposed by alkaline roasting method for the production of TiO2.The process included alkaline roasting, water leaching and acid leaching steps.In the alkaline roasting step, the factors such as roasting temperature and NaOH/CaTiO3 molar ratio were investigated and 99.5% TiO2 could be extracted from CaTiO3.In addition, it is believed that only ion-exchange between Ca2+ and Na+ takes place, while the structure of TiO 32-in CaTiO3 was not destroyed during the roasting process.In the acid leaching ...  相似文献   

19.
The variation in fracture strength of a brazed Si3N4/Cu/steel joint was compared with the change in residual stress as a function of the Cu-interlayer thickness that was used. The higher residual stress and the lower measured fracture strength for the joint, using a 0.1 mm thick Cu-interlayer, were ascribed to the entire dissolution of the Cu-interlayer into the brazing alloy. The finite element analysis of residual stress, which considered the microstructure at the interface region, could explain the fracture behavior for the brazed joints, which is dependent on the thickness of the Cu-interlayer.  相似文献   

20.
Phase relations in the ternary oxide system Al2O3-V2O5-MoO3 in the solid state in air have been investigated by using the x-ray diffraction (XRD) and differential thermal analysis/thermogravimetric (DTA/TG) methods. It was confirmed that in the subsolidus area of the Al2O3-V2O5-MoO3 system, there exist seven phases, that is Al2O3, V2O5(s.s.), MoO3, AlVO4, Al2(MoO4)3, AlVMoO7, and V9Mo6O40. Seven fields, in which particular phases coexist at equilibrium, were isolated. The crystal structure of AlVO4 has been refined from x-ray powder diffraction data. Its space group is triclinic, , Z = 6, with a = 0.65323(1) nm, b = 0.77498(2) nm, c = 0.91233(3) nm, α = 96.175(2)°, β = 107.234(3)°, γ = 101.404(3)°, V = 0.42555 nm3. The crystal structure of the compound is isotypic with FeVO4. Infrared (IR) spectra of AlVO4 and FeVO4 are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号