首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anatase TiO2 nanospheres (ATNSs) were successfully prepared through a facile solvothermal method followed by a thermal treatment. The sample was characterized by scanning electrons microscopy, transmission electron microscopy, x-ray diffraction, Raman spectrum and nitrogen adsorption techniques. When tested as an anode material for sodium-ion batteries, the electrode of ATNSs delivered a large discharge capacity of 208 mAh g?1 after 100 cycles at a current density of 50 mA g?1, indicating excellent cycling performance. This could be attributed to the uniform structure of the nanospheres with large surface area and porous nature, providing more active sites, buffering volume change, and facilitating the sodium ion intercalation as well as rapid diffusion during the charge/discharge process. Cyclic voltammetry demonstrated that the sodium storage mechanism is mainly controlled by pseudocapacitive behavior, resulting in a large capacity and outstanding cycling stability.  相似文献   

2.
The inherent drawbacks of Co2SnO4 in demonstrating the closer-to-theoretical capacity value behavior and the inadmissible volume-expansion-related capacity fade behavior have been surpassed by choosing a tailor-made material composition of Co2SnO4/SnO2, prepared at two different temperatures such as 400°C and 600°C to obtain residual carbon-containing and carbon-free compositions, respectively. Among the products, carbon-coated Co2SnO4/SnO2 composite exhibits better electrochemical performance compared with that of the carbon-free product mainly because of the beneficial effect of carbon in accommodating the volume-expansion-related issues arising from the alloying/de-alloying mechanism. A combination of conversion reaction and alloying/de-alloying mechanism is found to play a vital role in exhibiting closer-to-theoretical capacity values. In other words, an appreciable specific capacity value of 834 mAh g?1 has been exhibited by Co2SnO4/SnO2 anode containing carbon coating, thus, demonstrating the possibility to improve the electrochemical performance of the title anode through carbon coating, which is realized as a result of the addition of carefully manipulated synthesis conditions.  相似文献   

3.
The aqueous lithium–ion batteries using LiMn2O4 as cathode materials are considered to be one of the most promising stationary power sources for large-scale energy storage devices. In the present work, LiMn2O4 nanoparticles were successfully synthesized by using sol-gel method, and the morphology of particles was characterized by SEM. We made three electrodes of this active material with PVDF binder and different conductive agents and another electrode of this active material with PTFE binder and Vulcan as a conductor. Electrochemical performances were tested in 5 M LiNO3 aqueous electrolyte, and comparisons between these electrodes were accomplished.  相似文献   

4.
The thermodynamic database of the ZrO2-Gd2O3-Y2O3-Al2O3 system is up-dated taking into account new data on lattice stabilities of ZrO2, Gd2O3 and Y2O3 and heat capacity measurements for the monoclinic phase Gd4Al2O9 and phase with garnet structure Gd3Al5O12. New data for the heat capacities of Gd2Zr2O7 (pyrochlore) and GdAlO3 (perovskite) as well as on the enthalpy of formation of fluorite solid solutions (Zr1−x Gd x )O2−x/2 were found to be in good agreement with calculated results. In comparison with the previous assessment, taking into account new experimental data resulted in a change of the melting character of the Gd4Al2O9 phase from a peritectic one to a congruent one in the Gd2O3-Al2O3 system. Correspondently, in the ternary system ZrO2-Gd2O3-Al2O3, the melting character of the three-phase assemblage Gd2O3 (B), Gd4Al2O9 and GdAlO3 changed from eutectic to transition type U. The T 0-lines for T/M and F/T diffusionless transformations and driving force of partitioning to equilibrium assemblage T + F were calculated in the ZrO2-Gd2O3-Y2O3 system.  相似文献   

5.
Spinel LiMn2O4 cathodes were coated with 1 mol% YF3. X-ray diffraction (XRD) analyses showed that Y and/or F did not enter the lattice of the LiMn2O4 crystal. Transmission electron microscopy (TEM) showed that a compact YF3 layer of 5–20 nm in thickness was coated onto the surface of LiMn2O4 particles. Scanning electron microscopy (SEM) observation showed that the YF3 coating caused the agglomeration of LiMn2O4 particles. The cycling test demonstrated that the YF3 coating can improve the electrochemical performance of LiMn2O4 at both 20 and 55°C. Moreover, YF3-coated LiMn2O4 exhibited an improved rate capability compared with the uncoated one at high rates over 5C. The immersion test in electrolytes showed that YF3-coated LiMn2O4 is more erosion resistant than the uncoated one.  相似文献   

6.
Gas atomized 4J36 alloy powder was milled for 72 h then mixed with ZrW2O8 powder and sintered at 600°C for 4 h under argon atmosphere. 4J36/ZrW2O8 composites containing 10 vol.%, 20 vol.%, 30 vol.%, and 40 vol.% ZrW2O8 were fabricated, the relative density of which ranged from 70% to 80%. Thermal expansion coefficients of the composites decreased as the amount of ZrW2O8 increased, in agreement with the rule of the mixture. The coefficient of thermal expansion of the 4J36/40 vol.%ZrW2O8 composite in 25–100°C is 0.55 × 10−6/°C.  相似文献   

7.
Manganese oxide (Mn3O4) and iron oxide (Fe2O3) nanoparticles were successfully synthesized with the flower extracts of Chaenomeles sp. This is the first ever approach to synthesize nanoparticles from Chaenomeles sp. flower extracts. The organic molecules present in the flower extracts actively converted the nitrate precursor into its corresponding nanoparticles. The organic molecules that are involved in the synthesis of nanoparticles are identified using different phytochemical and gas chromatography–mass spectrometry analyses. The identified components are glycosides, alkaloids, terpenoids, saponins, flavonoids, quinines, and steroids. The structural and chemical compositions of the synthesized powder were also analyzed. The x-ray powder diffraction analysis revealed that the particles show tetragonal and rhombohedral crystalline phases. The Fourier transform infrared spectroscopy analysis showed the functional groups that are involved in the reduction of nitrates into the corresponding nanoparticles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of the elements in the synthesized nanoparticles. Transmission electron microscopy images showed the formation of spherical nanoparticles with an average size of 30–100 nm. Antioxidant analysis showed that the synthesized nanoparticles had excellent antioxidant potential. The antibacterial study showed that they inhibit the growth of harmful bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes. Thus, this study proposes a new eco-friendly and nontoxic method to synthesize nanoparticles for medicinal applications.  相似文献   

8.
Recent developments in the preparation, sintering process, mechanical properties, and thermal shock resistance of cermet inert anodes for aluminum electrolysis are reviewed in this paper. To obtain the desired technologies of low-temperature activated sintering of cermet inert anodes, the effects of material composition, sintering atmosphere, sintering temperature, and sintering aids on the densifi cation and microstructure of NiFe2O4-10NiO- based ceramics and cermets were studied. To obtain the toughening and strengthening technology of the cermet, the effects of material composition including ceramic and metallic phases are discussed. The cermet inert anodes with high density and mechanical properties were prepared through adjustment of material composition and sintering technology and selection of feasible sintering aids.  相似文献   

9.
Core–shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core–shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet–visible (UV–Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was?~?4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~?11.26 emu/g) compared with Fe3O4 powder (~?13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of ??1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of?~???1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.  相似文献   

10.
A composite photocatalyst (La/TiO<,2>/Fe<,3>O<,4>) with a lanthanum doped TiO<,2> (La/TiO<,2>) shell and a magnetite core was prepared by coating photoactive LafTiO<,2> onto a magnetic Fe<,3>O<,4> core. The morphological, structural, and optical properties of as-prepared samples were charac- terized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of lanthanum content on the photocatalytie properties was studied, and the result revealed that 0.15 mol% La/TiO<,2>/Fe<,3>O<,4>exhibited the highest photoactiv- ity. The photocatalytic properties of the prepared photocatalyst under UV and visible light were investigated in aqueous solution using methyl orange (MO) as a target pollutant. The results showed that the prepared photocatalyst was activated by visible light and used as an ef- fective catalyst in photooxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, La/TiO<,2> was tightly bound to Fe<,3>O<,4> and could be easily recovered from the medium by a simple magnetic process.  相似文献   

11.
As part of a general contribution to the study of accelerator driven system (ADS) nuclear reactor feasibility, a study of the five-component system Bi-Fe-Hg-O-Pb was undertaken. New results about the quasi-binary Bi2O3-Fe2O3 are presented in this paper. The phase diagram was reinvestigated by differential scanning calorimetry, x-ray diffraction, and electron probe microanalysis. A new compound was discovered and characterized: Bi25FeO40. Its crystallographic structure was refined. Invariant and transition temperatures are given, as well as phase compositions.  相似文献   

12.
NiFe2O4 nanorods have been successfully synthesized via thermal treatment of the rod-like precursor fabricated by Ni-doped α-FeOOH, which was enwrapped by the complex of citric acid and Ni2+. The morphology evolution during the calcination of the precursor nanorods was investigated with transmission electron microscopy (TEM), and the phase and the magnetic properties of samples were analyzed through X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The results indicated that the diameter of the NiFe2O4 nanorods obtained ranged between 30 and 50 nm, and the length ranged between 2 and 3 μm. As the calcination temperature was up to 600°C, the coercivity, saturation magnetization, and remanent magnetization of the samples were 36.1 kA·m−1, 27.2 A·m2·kg−1, and 5.3 A·m2·kg−1, respectively. The NiFe2O4 nanorods prepared have higher shape anisotropy and superior magnetic properties than those with irregular shapes.  相似文献   

13.
用固相法合成LiFe1-xYxPO4 (x=0, 0.01, 0.02, 0.03, 0.04)锂离子电池正极材料,采用X射线衍射仪、扫描电子显微镜、粉末比电阻法和充放电性能测试表征材料的晶体结构、微观形貌、电子电导率和电化学性能。结果表明,少量的钇掺杂并未改变材料的晶体结构,但改善了材料的微观结构,提高其电子电导率,改善可逆容量和电化学性能。在10 mA/g的电流密度下,LiFe0.97Y0.03PO4首次放电容量可达146.54 mAh/g。  相似文献   

14.
A facile polyol-assisted pyro-synthesis method was used to synthesize Co_3O_4 nanoparticles embedded into carbon matrix without using any conventional carbon source. The surface analysis by scanning electron microscopy showed that the Co_3O_4 nanoparticles(~20 ± 5 nm) are tightly enwrapped within the carbon matrix. CHN analysis determined the carbon content was only 0.11% in the final annealed sample. The Co_3O_4@carbon exhibited high capacities and excellent cycling performance as an anode at various current rates(such as 914.4 and 515.5 mAh g~(-1) at 0.25 and1.0 C, respectively, after 50 cycles; 318.2 mAh g~(-1) at a high current rate of 5.0 C after 25 cycles). This superior electrochemical performance of the electrode can be attributed to the various aspects, such as,(1) the existence of carbon matrix, which acts as a flexible buffer to accommodate the volume changes during Li~+ion insertion/deinsertion and facilitates the fast Li~+and electron transfer and(2) the anchoring of Co_3O_4 nanoparticles within the carbon matrix prevents particles agglomeration.  相似文献   

15.
Zinc ferrite (ZnFe2O4) sensitive coatings have been deposited by suspension plasma spraying. The phase constitution of the coatings was characterized by x-ray diffraction while the top surface and cross-sectional morphology of the coatings were inspected by scanning electron microscopy. The response to acetone was tested with the concentration in the range of 25-500 ppm at the working temperature from 175 to 275 °C. The sensors that were deposited at an arc current of 400 A showed better performance than those at 600 A owing to small grain size and high porosity. The sensor response increased with acetone concentration. The optimized sensors showed excellent response/recovery time and selectivity to acetone at 200 °C.  相似文献   

16.
Mesoporous iron phosphates were synthesized using sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) as surfactants. The material synthesized in the presence of SDS was not applied as a positive electrode active material of a lithium battery. The results show that the obtained FePO4 has a mesoporous structure with a specific surface area of 70 m2 g?1 and a dominant pore diameter of 3 nm. Those mesoporous were characterized by different microstructural and electrochemical analyzes. Among the materials studied under different conditions, those calcined at 450°C preserve mesoporous structures and exhibit the best electrochemical performance when used as active materials of the positive electrodes of lithium batteries. Effectively, a relatively high specific capacity of 135 and 122 mAh g?1 was registered at C/20 collected experimentally by the samples synthesized in the presence of SDS and CTAB, respectively.  相似文献   

17.
Electric transport and magnetoresistance characteristics were investigated for Fe3O4-x Fe(x=0, 10, 20 wt.%) samples and Fe3O4-α-Fe2O3 samples sintered at 500°C. For composition dependence of Fe3O4-x Fe samples, the largest room temperature MR, 3.3% at 10 kOe, was obtained from a Fe3O4-10 Fe sample. For the surface heat treatment dependence of Fe3O4 powders, the largest room temperature MR, 4% at 10 kOe, was obtained from a Fe3O4-α-Fe2O3 sample sintered with Fe3O4 powders heated at 200°C in air. It was found that these enhanced MR ratios always appear together with the appropriate excess resistance which is regarded as the tunneling barrier. These enhanced MR ratios of Fe3O4-10 Fe and Fe3O4-α-Fe2O3 samples can be explained by the increased interparticle contact sites and the appropriate thickness of α-Fe2O3, respectively.  相似文献   

18.
Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.  相似文献   

19.
Al2O3/ZrO2/Al2O3 gate stacks were prepared on ultrathin SOI (Silicon on insulator) substrates by ultrahigh vacuum electron beam evaporation and post-annealed in N2 at 450°C for 30 min. Three clear nanolaminate layered structure of Al2O3(2.1 nm)/ZrO2(3.5 nm)/Al2O3(2.3 nm) was observed with a high-resolution cross-sectional transmission electron microscope (HR-XTEM). High frequency capacitance voltage (C-V) characteristics of a fully depleted (FD) SOI MOS capacitor at 1 and 5 MHz were studied. The minority carriers determine the high frequency C-V properties, which is opposite to the case of bulk MOS capacitors. The series resistance of the SOI substrate is found to be the determinant factor of the high frequency characteristics of FD SOI MOS capacitors. This article is based on a presentation in “The 7th Korea-China Workshop on Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24≈27, 2003.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号