首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optimization methodology that iteratively links the results of multibody dynamics and structural analysis software to an optimization method is presented to design flexible multibody systems under dynamic loading conditions. In particular, rigid multibody dynamic analysis is utilized to calculate dynamic loads of a multibody system and a structural optimization algorithm using equivalent static loads transformed from the dynamic loads are used to design the flexible components in the multibody dynamic system. The equivalent static loads, which are derived from equations of motion, are used as multiple loading conditions of linear structural optimization. A simple example is solved to verify the proposed methodology and the pelvis part of the biped humanoid, a complex multibody system which consists of many bodies and joints, is redesigned using the proposed methodology.  相似文献   

2.
This paper is dedicated to the structural optimization of flexible components in mechanical systems modeled as multibody systems. While most of the structural optimization developments have been conducted under (quasi-)static loadings or vibration design criteria, the proposed approach aims at considering as precisely as possible the effects of dynamic loading under service conditions. Solving this problem is quite challenging and naive implementations may lead to inaccurate and unstable results. To elaborate a robust and reliable approach, the optimization problem formulation is investigated because it turns out that it is a critical point. Different optimization algorithms are also tested. To explain the efficiency of the various solution approaches, the complex nature of the design space is analyzed. Numerical applications considering the optimization of a two-arm robot subject to a trajectory tracking constraint and the optimization of a slider-crank mechanism with a cyclic dynamic loading are presented to illustrate the different concepts.  相似文献   

3.
Flexible multibody dynamics (FMD) has found many applications in control, analysis and design of mechanical systems. FMD together with the theory of structural optimization can be used for designing multibody systems with bodies which are lighter, but stronger. Topology optimization of static structures is an active research topic in structural mechanics. However, the extension to the dynamic case is less investigated as one has to face serious numerical difficulties. One way of extending static structural topology optimization to topology optimization of dynamic flexible multibody system with large rotational and transitional motion is investigated in this paper. The optimization can be performed simultaneously on all flexible bodies. The simulation part of optimization is based on an FEM approach together with modal reduction. The resulting nonlinear differential-algebraic systems are solved with the error controlled integrator IDA (Sundials) wrapped into Python environment by Assimulo (Andersson et al. in Math. Comput. Simul. 116(0):26–43, 2015). A modified formulation of solid isotropic material with penalization (SIMP) method is suggested to avoid numerical instabilities and convergence failures of the optimizer. Sensitivity analysis is central in structural optimization. The sensitivities are approximated to circumvent the expensive calculations. The provided examples show that the method is indeed suitable for optimizing a wide range of multibody systems. Standard SIMP method in structural topology optimization suggests stiffness penalization. To overcome the problem of instabilities and mesh distortion in the dynamic case we consider here additionally element mass penalization.  相似文献   

4.
The paper concerns a detailed comparison between two optimization methods that are used to perform the structural optimization of flexible components within a multibody system (MBS) simulation. The dynamic analysis of flexible MBS is based on a nonlinear finite element formulation. The first method is a weakly coupled method, which reformulates the dynamic response optimization problem in a two-level approach. First, a rigid or flexible MBS simulation is performed, and second, each component is optimized independently using a quasi-static approach in which a series of equivalent static load (ESL) cases obtained from the MBS simulation are applied to the respective components. The second method, the fully coupled method, performs the dynamic response optimization using the time response obtained directly from the flexible MBS simulation. Here, an original procedure is proposed to evaluate the ESL from a nonlinear finite element simulation, contrasting with the floating reference frame formulation exploited in the standard ESL method. Several numerical examples are provided to support our position. It is shown that the fully coupled method is more general and accommodates all types of constraints at the price of a more complex optimization process.  相似文献   

5.
Design sensitivity analysis of flexible multibody systems is important in optimizing the performance of mechanical systems. The choice of coordinates to describe the motion of multibody systems has a great influence on the efficiency and accuracy of both the dynamic and sensitivity analysis. In the flexible multibody system dynamics, both the floating frame of reference formulation (FFRF) and absolute nodal coordinate formulation (ANCF) are frequently utilized to describe flexibility, however, only the former has been used in design sensitivity analysis. In this article, ANCF, which has been recently developed and focuses on modeling of beams and plates in large deformation problems, is extended into design sensitivity analysis of flexible multibody systems. The Motion equations of a constrained flexible multibody system are expressed as a set of index-3 differential algebraic equations (DAEs), in which the element elastic forces are defined using nonlinear strain-displacement relations. Both the direct differentiation method and adjoint variable method are performed to do sensitivity analysis and the related dynamic and sensitivity equations are integrated with HHT-I3 algorithm. In this paper, a new method to deduce system sensitivity equations is proposed. With this approach, the system sensitivity equations are constructed by assembling the element sensitivity equations with the help of invariant matrices, which results in the advantage that the complex symbolic differentiation of the dynamic equations is avoided when the flexible multibody system model is changed. Besides that, the dynamic and sensitivity equations formed with the proposed method can be efficiently integrated using HHT-I3 method, which makes the efficiency of the direct differentiation method comparable to that of the adjoint variable method when the number of design variables is not extremely large. All these improvements greatly enhance the application value of the direct differentiation method in the engineering optimization of the ANCF-based flexible multibody systems.  相似文献   

6.
Passenger cars, transit buses, railroad vehicles, off-highway trucks, earth moving equipment and construction machinery contain structural and light-fabrications (SALF) components that are prone to excessive vibration due to rough terrains and work-cycle loads’ excitations. SALF components are typically modeled as flexible components in the multibody system allowing the analysts to predict elastic deformation and hence the stress levels under different loading conditions. Including SALF component in the multibody system typically generates closed-kinematic loops. This paper presents an approach for integrating SALF modeling capabilities as a flexible body in a general-purpose multibody dynamics solver that is based on joint-coordinates formulation with the ability to handle closed-kinematic loops. The spatial algebra notation is employed in deriving the spatial multibody dynamics equations of motion. The system kinematic topology matrix is used to project the Cartesian quantities into the joint subspace, leading to a condensed set of nonlinear equations with minimum number of generalized coordinates. The proposed flexible body formulation utilizes the component mode synthesis approach to reduce the large number of finite element degrees of freedom to a small set of generalized modal coordinates. The resulting reduced flexible body model has two main characteristics: the stiffness matrix is constant while the mass matrix depends on the elastic modal coordinates. A consistent set of pre-computed inertia shape integrals are identified and used to update the modal mass matrix at each time step. The implementation of the component mode synthesis approach in a closed-loop recursive multibody formulation is presented. The kinematic equations are modified to include the effect of the flexible body modal elastic coordinates. Also, modified constraint equations that include the effect of flexibility at the joint connections and the necessary details of the Jacobian matrix are presented. Baumgarte stabilization approach is used to stabilize the constraint equations without using iterative schemes. A sample results for flexible body impeded in a closed system will be presented to demonstrate the above mentioned approach.  相似文献   

7.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

8.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

9.
Design Optimization of Multibody Systems by Sequential Approximation   总被引:1,自引:0,他引:1  
Design optimization of multibody systems is usually established by a direct coupling of multibody system analysis and mathematical programming algorithms. However, a direct coupling is hindered by the transient and computationally complex behavior of many multibody systems. In structural optimization often approximation concepts are used instead to interface numerical analysis and optimization. This paper shows that such an approach is valuable for the optimization of multibody systems as well. A design optimization tool has been developed for multibody systems that generates a sequence of approximate optimization problems. The approach is illustrated by three examples: an impact absorber, a slider-crank mechanism, and a stress-constrained four-bar mechanism. Furthermore, the consequences for an accurate and efficient accompanying design sensitivity analysis are discussed.  相似文献   

10.
The topology optimization of members of flexible multibody systems is considered for energy-efficient lightweight design, where the gradient calculation has an essential role. In topology optimization of flexible multibody systems, where the function evaluations are very time consuming, the gradient information is necessary to accelerate the optimization process. Different approaches have been introduced and tested for the gradient calculation in the fully coupled topology optimization of flexible multibody systems. However, the computation and implementation costs of these methods are high, which limits the optimization size and the possible number of design variables. In this work, we present a modified gradient calculation based on the equivalent static load (ESL) method, which combines the time efficiency of gradient calculation of the ESL method with the higher accuracy of gradient calculation in the fully coupled methods. This modified approach, which takes into account the linear dependencies of inertial loads on acceleration, is tested on the application example of a flexible slider-crank mechanism, and the results are compared with the weakly coupled ESL method and a fully coupled optimization where gradients are calculated using the adjoint variable method.  相似文献   

11.
This paper presents a criterion on inclusion of stress stiffening effects in dynamic simulation of flexible multibody systems. The proposed criterion examines numerically the eigenvalue variation of the total modal stiffness matrix that is a combination of the modal stress stiffness matrix and the conventional linear modal stiffness matrix prior to actual dynamic simulation. If the variation is sufficiently large for any flexible body in the multibody system, then stress stiffening effects must be included in dynamic simulation of flexible multibody systems for accurate prediction of dynamic behavior. Since the criterion uses the most general stress stiffness matrix contributed from applied and constraint reaction loads as well as from a system of 12 inertial loads, this criterion is applicable to any general flexible multibody dynamic system. Several numerical results are presented to show the effectiveness of the proposed criterion.  相似文献   

12.
This paper presents a method for improving dynamic solutions that are obtained from the dynamic simulation of flexible multibody systems. The mode-acceleration concept in linear structural dynamics is utilized in the proposed method for improving accuracy in the postprocessing stage. A theoretical explanation is made on why the proposed method improves the dynamic solutions in the context of the mode-acceleration method. A mode-acceleration equation for each flexible body is defined and the load term in the right hand side of the equation is represented as a combination of space-dependent and time-dependent terms so that efficient computation of dynamic solutions can be achieved. The load term is obtained from dynamic simulation of a flexible multibody system and a finite element method is used to compute dynamic solutions by quasi-static analyses. Numerical examples show the effectiveness of the proposed method.  相似文献   

13.
The present work deals with a computational approach to fluid-structure interaction (FSI) problems by coupling of flexible multibody system dynamics and fluid dynamics. Since the methods for the numerical modeling are well known, both for the structural and the fluid part, the focus of this work lies on the coupling formalism. Moreover, the applicability of the presented approach to arbitrary geometries and high structural stiffness is studied, as well as an easy model setup. No restriction should be made on the topology of the structure or the complexity of motion.For the fluid part a meshless method, known as smoothed particle hydrodynamics (SPH) is applied, which fulfills the above requirements. While an explicit time integration scheme in SPH provides a fast simulation of the fluid dynamics, advanced methods from flexible multibody dynamics provide a variety of benefits for the simulation of the solid part. Amongst these are specialized structural finite elements for both small and large deformation bodies, joints, stable implicit time-integration schemes, and model reduction techniques.A rule for the interaction between fluids and structures is derived from imposing a distributed potential over boundary segments of the structures, which the fluid particles respond to. The work is concluded by illustrative examples, demonstrating the successful coupling of flexible multibody systems with fluids.  相似文献   

14.
Flexible Multibody Dynamics: Review of Past and Recent Developments   总被引:35,自引:0,他引:35  
In this paper, a review of past and recent developments in the dynamics of flexible multibody systems is presented. The objective is to review some of the basic approaches used in the computer aided kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. Among the formulations reviewed in this paper are the floating frame of reference formulation, the finite element incremental methods, large rotation vector formulations, the finite segment method, and the linear theory of elastodynamics. Linearization of the flexible multibody equations that results from the use of the incremental finite element formulations is discussed. Because of space limitations, it is impossible to list all the contributions made in this important area. The reader, however, can find more references by consulting the list of articles and books cited at the end of the paper. Furthermore, the numerical procedures used for solving the differential and algebraic equations of flexible multibody systems are not discussed in this paper since these procedures are similar to the techniques used in rigid body dynamics. More details about these numerical procedures as well as the roots and perspectives of multibody system dynamics are discussed in a companion review by Schiehlen [79]. Future research areas in flexible multibody dynamics are identified as establishing the relationship between different formulations, contact and impact dynamics, control-structure interaction, use of modal identification and experimental methods in flexible multibody simulations, application of flexible multibody techniques to computer graphics, numerical issues, and large deformation problem. Establishing the relationship between different flexible multibody formulations is an important issue since there is a need to clearly define the assumptions and approximations underlying each formulation. This will allow us to establish guidelines and criteria that define the limitations of each approach used in flexible multibody dynamics. This task can now be accomplished by using the absolute nodal coordinate formulation which was recently introduced for the large deformation analysis of flexible multibody systems.  相似文献   

15.
This work treats the problem of modelling multibody systems with structural flexibility. By combining linear graph theory with the principle of virtual work and finite elements, a dynamic formulation is obtained that extends graph-theoretic (GT) modelling methods to the analysis of thin flexible plates for multibody systems. The system is represented by a linear graph, in which nodes represent reference frames on flexible plates, and edges represent components that connect these frames. To generate the equations of motion with elastic deformations, the flexible plates are discretized using a triangular thin shell finite element based on the discrete Kirchhoff criterion and can be used to discretize bidirectional bodies such as satellite panels, flatbed trailers, and mechanisms with plates. Three flexible systems with plates are analyzed to illustrate the performance of this new variational graph-theoretic formulation and its ability to generate directly a set of motion equations for flexible multibody systems (FMS) without additional user input.  相似文献   

16.
The paper presents a general optimization methodology for flexible multibody systems which is demonstrated to find optimal layouts of fiber composite structures components. The goal of the optimization process is to minimize the structural deformation and, simultaneously, to fulfill a set of multidisciplinary constraints, by finding the optimal values for the fiber orientation of composite structures. In this work, a general formulation for the computation of the first order analytical sensitivities based on the use of automatic differentiation tools is applied. A critical overview on the use of the sensitivities obtained by automatic differentiation against analytical sensitivities derived and implemented by hand is made with the purpose of identifying shortcomings and proposing solutions. The equations of motion and sensitivities of the flexible multibody system are solved simultaneously being the accelerations and velocities of the system and the sensitivities of the accelerations and of the velocities integrated in time using a multi-step multi-order integration algorithm. Then, the optimal design of the flexible multibody system is formulated to minimize the deformation energy of the system subjected to a set of technological and functional constraints. The methodologies proposed are first discussed for a simple demonstrative example and applied after to the optimization of a complex flexible multibody system, represented by a satellite antenna that is unfolded from its launching configuration to its functional state.  相似文献   

17.
A review of optimization of structures subjected to transient loads   总被引:1,自引:3,他引:1  
Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time-dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with corresponding papers that have been published since the 1970s. The treatment of time-dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed—direct differentiation method and adjoint variable method. The approximation concept mainly focuses on the response surface method in crashworthiness and local approximation with the intermediate variables. Especially, a method using the equivalent static load is discussed as an approximation method. It takes advantage of the well-established static response optimization. The structural optimization in flexible multibody dynamic systems is reviewed in the viewpoint of the above three themes.  相似文献   

18.
This work proposes an optimization methodology for the identification of realistic multibody vehicle models, based on the plastic hinge approach, for crash analysis. The identification of the design variables and the objective function and constraints are of extreme importance for the success of the optimization. The characteristics of the plastic hinges are used as design variables while the objective functions are formulated with measures of the difference between the dynamic response of the model and a reference response. The sequential application of genetic and gradient-based optimization methods is used to solve the optimization problem constituting a systematic approach to the automatic identification of vehicle multibody models. The methodology is demonstrated with the identification of the multibody model of a large family car for side and front crash. The vehicle model is developed in the MADYMO multibody code which is linked with the optimization algorithms implemented in the Matlab Optimization Toolbox.  相似文献   

19.
This paper is concerned with the efficient dynamic analysis of flexible multibody systems using a robust coordinate reduction technique. Unlike conventional static correction, the formulation is derived by dynamic correction that considers the inertia effect. In this formulation, the constraint and fixed-interface normal modes, which are representative modes in the typical coordinate reduction, are corrected by considering the truncated modal effect with the residual flexibility. Therefore, the proposed method can offer a more precise reduced system without increasing the dimension, which consequently leads to a more accurate and efficient flexible multibody simulation. We implement here the proposed method under augmented formulations of the floating reference frame approach, and test its performance with numerical examples.  相似文献   

20.
Summary The objective of this paper is to investigate the efficiency of various optimization methods based on mathematical programming and evolutionary algorithms for solving structural optimization problems under static and seismic loading conditions. Particular emphasis is given on modified versions of the basic evolutionary algorithms aiming at improving the performance of the optimization procedure. Modified versions of both genetic algorithms and evolution strategies combined with mathematical programming methods to form hybrid methodologies are also tested and compared and proved particularly promising. Furthermore, the structural analysis phase is replaced by a neural network prediction for the computation of the necessary data required by the evolutionary algorithms. Advanced domain decomposition techniques particularly tailored for parallel solution of large-scale sensitivity analysis problems are also implemented. The efficiency of a rigorous approach for treating seismic loading is investigated and compared with a simplified dynamic analysis adopted by seismic codes in the framework of finding the optimum design of structures with minimum weight. In this context a number of accelerograms are produced from the elastic design response spectrum of the region. These accelerograms constitute the multiple loading conditions under which the structures are optimally designed. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号