首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A compact broadband planar 90° phase shifter is presented in this letter. By loading the transmission line with M-shaped open stub, the proposed new phase shifter can achieve both compact size and wide bandwidth. Design equations are also given to reveal the key factors that affect the operation bandwidth of the phase shifter. For demonstration, one sample 90° phase shifter is designed, fabricated and measured. Results indicate that the designed phase shifter can realise a wide bandwidth from 2.7 GHz to 6 GHz, referring to a criterion of 6.2° phase deviation.  相似文献   

2.
This paper presents wideband compact differential reflective phase shifter based on the double layer slot-coupled coupler configuration. This novel phase shifter arrangement consists of a 3-dB hybrid coupler with the coupled and transmission ports terminated with rectangular and elliptically shaped microstrip loads. By altering the ports termination of the coupler, phase shifters propose differential phase ranging from −90° to +90° over 1.3–5.9G Hz frequency band. To achieve different range of phase performance, the proper reactance is calculated at the outputs of coupler. These reactances are transformed to the elliptical or rectangular-shaped microstrip load with various dimensions for every phase shifter. The calculation and simulations results show that the developed circuits could provide ±30°, ±60°, ±45° and ±90° differential phase shifts. For verification of this wideband phase shifter design method, two phase shifter example with rectangular and elliptical load termination is fabricated and measured. The measured return loss of the phase shifter with elliptically load is better than 10 dB over 1.3–5.9G Hz frequency band as well as insertion loss is less than 1 dB. The phase shift deviation is less than 2.1°. The results demonstrate that the proposed phase shifters are well suited for use in GPS/LTE/WiMax/WLAN frequency bands.  相似文献   

3.
A New Class of Broad-Band Microwave 90-Degree Phase Shifters   总被引:1,自引:0,他引:1  
In the type of circuits considered here, the input power is divided equally between two channels whose outputs are caused to have a very nearly 90° phase difference over a broad frequency range. Networks suitable for application at low frequencies which perform the above function have been widely investigated. This report describes a new type of 90° differential phase shifter which has a constant resistance input, and which is useful over bandwidths as large as 5:1 in the microwave region.  相似文献   

4.
A Monolithic Single-Chip X-Band Four-Bit Phase Shifter   总被引:3,自引:0,他引:3  
X-band GaAs monolithic passive phase shifter with 22.5°, 45°, 90°, and 180° phase bits are developed using FET switches. By cascading all four bits, a four-bit digital phase shifter with 5.1+-0.6-dB insertion loss is realized on a single 6.4 x 7.9 x 0.1-mm chip.  相似文献   

5.
A Low-Loss Ku-Band Monolithic Analog Phase Shifter   总被引:1,自引:0,他引:1  
A GaAs monolithic Ku-band analog phase shifter integrating 90° branch line coupler with planar varactor diodes has been fabricated for the first time. A phase shift of 109° +- 3° with an insertion loss of 1.8+-0.3 dB was measured from 16 to 18 GHz. A 360° phase shifter with 4.2+-0.9 dB insertion loss was realized in the same frequency range by connecting three phase-shifter chips in series. To our knowledge, this is the lowest insertion loss obtained by a 360° Ku-band phase shifter using monolithic circuits. In addition, hyperabrupt varactors using nonuniform doping profiles increased the phase shift by more than 30° and produced a more linear dependence of phase shift on control voltage.  相似文献   

6.
通过对多路0°~360°的全相位数控移相器的控制技术的研究,采用一种基于“串口服务器+时序控制器”的方法实现了多路全相位的微波移相控制。实验测试表明:这种控制方法是可行的,便于多路控制的工程化实现。同时实际的应用中发现,在不同频段和较大的相移情况下,存在移相精确度非线性变化的问题,并提出了基于软件编程的改进方法。  相似文献   

7.
A low insertion lose fin-line PIN diode phase shifter is presented. 90° and 180° phase shifters are realized respectively. Phase error less than 5° and bandwidth 3 GHz at Ka band are achieved. The insertion loss is better than 0.5dB. The BPSK and QPSK modulators consisting of this phase shifter and fin-line coupler are also given. The circuits and results are given.  相似文献   

8.
该文提出了一种工作于30~32 GHz的毫米波差分移相器,其尺寸为30 mm×18 mm×0.127 mm。该移相器以微带线为基础进行设计,由中心圆环及一对开口谐振环(SRR)共同组成。通过改变中心圆环的半径大小实现在工作频段内的S参数优化。以参考线的输出相位为基准,通过改变开口谐振环半径依次实现22.5°、45°、90°的差分移相。结果表明,在所设计的频段内,该移相器的回波损耗小于-10 dB,插入损耗小于1.4 dB,仿真最大移相误差小于5°。该移相器结构简单,便于制造。通过实物样品测试,验证了其仿真结果的可靠性。  相似文献   

9.
基于WIN 0.25 μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计并制备了一款X波段4 bit单片微波集成电路(MMIC)数字移相器.22.5°和45°移相单元采用开关滤波型拓扑结构,90°和180°移相单元采用高低通滤波型拓扑结构.对拓扑结构工作原理进行分析,并采用ADS2014软件完成电路的电磁仿真及优化.测试结果表明,该4 bit MMIC数字移相器获得了优良的宽带性能,且与仿真结果吻合良好.在8~ 13 GHz频带内,移相器的均方根(RMS)相位精度误差小于6.5°,插入损耗优于-6.8 dB,RMS插入损耗波动低于0.5 dB,输入回波损耗优于-13 dB,输出回波损耗优于-9.5 dB.该4 bit MMIC数字移相器在相对带宽为47%的X频段内性能优良,适用于有源相控阵雷达等通信系统中.  相似文献   

10.
A synthesis procedure of the impedance-transforming network in a p-i-n diode phase shifter is given. A representation of a reflection performance on the impedance plane is used successfully to determine the impedance matrix of the network. The procedure is straightforward and its validity is demonstrated by a prototype 90° phase shifter at 10 GHz.  相似文献   

11.
12.
提出了一种基于液晶的太赫兹电控反射式移相器及其构成的波束扫描阵列天线。通过采用液晶调控的开槽结构移相器,解决了液晶调控过程中谐振层覆盖面不足造成的液晶取向不均、边缘效应和饱和电压增大等问题。设计了工作在380 GHz三开槽的移相器,对谐振频点的表面电流分布和谐振频点进行了仿真分析。数值计算结果表明当液晶相对介电常数在2.47~3.26范围内变化,377~392 GHz频率范围内移相器能够实现360°的相移。采用三开槽结构反射相移单元,设计了工作于380 GHz的电控波束扫描阵列天线,实现了30°范围内的一维波束扫描,主瓣增益大于20 dBi。  相似文献   

13.
6~18GHz四位数控移相器单片集成电路的设计   总被引:1,自引:0,他引:1  
设计了6~18GHz频带4bitGaAs数字移相器,着重介绍宽带移相单元的设计。该移相器通过ED02AH0.2μm PHEMT工艺实现。最终的单片数字移相器性能如下:在6~18GHz范围内,11.25°移相单元的移相波动小于±2°;22.5°移相单元的移相波动小于±2.5°;45°的移相波动为小于±5°;90°移相单元的移相波动小于±5°。所有状态的移相平坦度小于20°,移相均方差<7°,插入损耗<13dB,两端口所有态的回波损耗<-10dB(典型值)。  相似文献   

14.
The design approach and performance of a 22.5°/45°digital phase shifter based on a switched filter network for X-band phased arrays are described. Both the MMIC phase shifters are fabricated employing a 0.25μm gate GaAs pHEMT process and share in the same chip size of 0.82×1.06 mm2. The measurement results of the proposed phase shifters over the whole operating frequency range show that the phase shift error is less than 22.5°±2.5°, 45°±3.5°, which shows an excellent agreement with the simulated performance, the insertion loss is within the range of 0.9-1.2 dB for the 22.5°phase shifter and 0.9-1.4 dB for the 45°phase shifter, and the input/output return loss is better than -12.5 and -11 dB respectively. They also achieve the similar P1dB continuous wave power handing capability of 24.8 dBm at 10 GHz. The phase shifters show a good phase shift error, insertion loss and return loss in the X-band (40%), which can be employed into the wide bandwidth multi-bit digital phase shifter.  相似文献   

15.
本文报道了一种工作在16.0~17.0GHz单片集成180°的移相器.文中通过对无源工作的GaAs MESFET的建模,分析了影响移相器性能的主要参数,以及这些参数的最佳取值.制作在2.45×2.80×0.2mm芯片上的移相器其参数为:插损小于4.03dB,输入电压驻波比小于1.66,输出电压驻波比小于1.71,相移偏差在12.5°以内.  相似文献   

16.
A field theory method based on the orthogonal expansion into eigenmodes is presented for the design of double dielectric-slab-filled waveguide phase shifters with linearly tapered sections. Prototypes of 90° differential phase shift with reference to a corresponding empty waveguide of the same length achieved typically about +-4° phase error and less than -30-dB input reflection within +-5-percent bandwidth, for WR 102-band (7-11 GHz) through WR 28-band (26.5-40 GHz) waveguides. Design curves for differential phase shifts of 12.25°, 22.5°, 45°, 90°, 180°, and 270° are given. Utilizing the differential phase compensation effect of the dispersive behavior of the dielectric-filled and empty reference waveguides, the phase error is only +-1° within +-8.5-percent bandwidth. Further investigations include composite phase shifters, mechanical lateral displacement, and tolerance influences. An experimental 90° phase shifter for 14-GHz midband frequency shows good agreement between theory and measurements.  相似文献   

17.
通过分析向列型液晶移相器的原理、结构及可以达到的技术指标,指出采用倒置微带结构设计的液晶移相器的移相度可以达到360°,品质因数可以达到12°/dB,而且运行电压只有30 V左右。在此基础上,提出了该种移相器研究中存在的问题以及改进的办法。向列型液晶移相器具有独特的优势和发展潜力,不久的将来会在相控阵雷达以及卫星通讯等领域起到关键作用。  相似文献   

18.
A novel six-port network based on half-mode substrate integrated waveguide (HMSIW) is proposed. In this design, a HMSIW hybrid 3 dB coupler and a -90° phase shifter are designed as fundamental building block of six-port network. By combining four HMSIW couplers and one phase shifter, a HMSIW six-port network at 29–32 GHz is constructed. The six-port network is fabricated and measured. Measurement results agree well with simulation, and show good balance and phase relationship between ports.  相似文献   

19.
The variation of transmission phase for single- and dual-gate GaAs MESFET's with bias change and its probable effects on the performance of an active phase shifter have been studied for the frequency range 2 to 4 GHz. from measured S-parameter values for single- and dual-gate transistors, the element values of the equivalent circuits were fitted by using the computer-aided design program SUPER COMPACT. For the normal full-gate voltage range 0 to -2 V at V/sub DS/= 4 V, the single-gate MESFET varies in transmission phase from 142° to 149° at 2 GHz, and from 109° to 119° at 4 GHz. However, with drain voltage varied from 0.3 to 4 V and a constant gate-voltage bias of 0 V, the phase shifts are much larger, 105° to 145° at 2 GHz and 78° to 112° at 4 GHz. this suggests that large phase shifts may be expected in a dual-gate device and this is found to be so. With V/sub DS/= 4 Vand V/sub GS1/= - 1.0 V, variation of control (second) gate bias from 0 to - 1.75 V for the NE463 GaAs MESFET produces a transmission phase variation from 95° to 132° at 2 GHz and 41° to 88° at 4 GHz. Such phase shifts cause both amplitude and phase errors in phase-shifter circuits of the kind where signals from two FET channels are combined in quadrature with their gate voltages controlled to provide 0° to 90° phase control with constant amplitude. For the single-gate FET examined, the expected amplitude and phase errors are 0.30 dB and 6° at 2 GHz, and 0.36 dB and 10° at 4 GHz. If dual-gate FET's are used in similar circuits, the distribution of errors is different. For NE463 devices, the corresponding figures are 0.56 dB and 2° at 2 GHz and 1.2 dB and 3° at 4 GHz. the advantage of the dual-gate configuration is that the input impedance conditions are more constant than for the single-gate configuration.  相似文献   

20.
A two-criteria problem of the synthesis of differential phase shifters designed on the basis of a new structure-a symmetric stepped transmission line with a stub connected in the middle of the structure—is solved. Optimum parameters of such phase shifters are calculated for phase shifts φ0 = 11.25°−135° and bandwidths of 40% and 67%. It is found that the wave impedances of the steps monotonically decrease from feeding lines to the structure center and optimum wave impedances of the stub and sections decrease with increasing φ0. It is shown that structures with different stubs are analytically equivalent. Parameter values of the phase shifter are improved as compared to the parameter values of a known design. A 90° microstrip phase shifter is experimentally studied in a frequency band of 2–4 GHz. It is found that the maximum discrepancy between the theoretical and experimental characteristics is 5° and the maximum value of the standing-wave ratio is 1.11  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号