首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The compressive post-buckling behavior of composite laminates containing embedded delamination with arbitrary shape is investigated analytically. For modeling the embedded delamination, the laminate is divided into three smaller regions. The higher order shear deformation theory is implemented and the formulation is based on the Rayleigh-Ritz approximation technique by the application of the simple/complete polynomial series for each region. The nonlinear equilibrium equations, which are achieved through the application of the principle of Minimum Potential Energy, are solved by employing the Newton-Raphson iterative procedure. Some interesting results are obtained and compared with those achieved by the finite element method of analysis using ANSYS commercial software. A good agreement is seen to exist between the results. This is while for a given level of accuracy in the results, ANSYS requires a markedly larger number of degrees of freedom compared to that needed by the developed method. Moreover, a considerable reduction in the load carrying capacity of laminate is noticed due to the presence of delamination.  相似文献   

3.
A new mixed finite element formulation is proposed to analyze transient coupled thermoelastic problems. Coupled model of dynamic thermoelasticity is selected for a laminated composite and a homogeneous isotropic plate. For the particular finite element developed here, there are 15 degrees of freedom at each node. Two simply supported plates are considered subjected to sinusoidally distributed mechanical and thermal loading. It is seen, by comparing the present results with results from the NISA II FEM code, that they are in good agreement.  相似文献   

4.
A new shear deformation theory for sandwich and composite plates is developed. The proposed displacement field, which is “m” parameter dependent, is assessed by performing several computations of the plate governing equations. Therefore, the present theory, which gives accurate results, is relatively close to 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature.  相似文献   

5.
In this paper we examine the suitability of higher order shear deformation theory based on cubic inplane displacements and parabolic normal displacements, for stress analysis of laminated composite plates including the interlaminar stresses. An exact solution of a symmetrical four layered infinite strip under static loading has been worked out and the results obtained by the present theory are compared with the exact solution. The present theory provides very good estimates of the deflections, and the inplane stresses and strains. Nevertheless, direct estimates of strains and stresses do not display the required interlaminar stress continuity and strain discontinuity across the interlaminar surface. On the other hand, ‘statically equivalent stresses and strains’ do display the required interlaminar stress continuity and strain discontinuity and agree very closely with the exact solution.  相似文献   

6.
An analytical solution of the static governing equations of exponentially graded plates obtained by using a recently developed higher order shear deformation theory (HSDT) is presented. The mechanical properties of the plates are assumed to vary exponentially in the thickness direction. The governing equations of exponentially graded plates and boundary conditions are derived by employing the principle of virtual work. A Navier-type analytical solution is obtained for such plates subjected to transverse bi-sinusoidal loads for simply supported boundary conditions. Results are provided for thick to thin plates and for different values of the parameter n, which dictates the material variation profile through the plate thickness. The accuracy of the present code is verified by comparing it with 3D elasticity solution and with other well-known trigonometric shear deformation theory. From the obtained results, it can be concluded that the present HSDT theory predict with good accuracy inplane displacements, normal and shear stresses for thick exponentially graded plates.  相似文献   

7.
A new higher-order theory for the analysis of laminated orthotropic plates and shells subject to both mechanical and thermal loads is developed. Using the variational approach the system of governing differential equations and corresponding boundary conditions are derived. Two refined models of the stress and strain state are considered, their application and accuracy are discussed. The analytical solution is obtained for plates and shells with the Navier boundary conditions on the side surfaces. The results of calculations are given and compared with an exact three-dimensional solution available in the literature. The influence of the laminated structure upon the exactness of results and the characteristics of stress–strain state is studied and discussed.  相似文献   

8.
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddys third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu–Hill equations from which the boundary points on the unstable regions are determined by Bolotins method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.This work was fully supported by grants from the Australian Research Council (A00104534) and from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 1024/01 E). The authors are grateful for this financial support.  相似文献   

9.
ABSTRACT

A trigonometric layerwise shear deformation theory is developed for the flexural analysis of laminated plates. The present theory achieves in-plane displacement continuity, transverse shear stress continuity, and traction-free boundary condition. Hence, botheration of shear correction coefficient is neglected. The governing differential equation and boundary conditions are obtained from the principle of virtual work. Although the present analytical method is bounded to a corner supported boundary condition, it neglects the numerical and computational error. Like first-order shear deformation theory, the present theory possesses five numbers of unknowns. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.  相似文献   

10.
A two-dimensional global higher-order deformation theory is presented for thermal buckling of cross-ply laminated composite and sandwich plates. By using the method of power series expansion of continuous displacement components, a set of fundamental governing equations which can take into account the effects of both transverse shear and normal stresses is derived through the principle of virtual work. Several sets of truncated Mth-order approximate theories are applied to solve the eigenvalue problems of a simply supported multilayered plate. Modal transverse shear and normal stresses can be calculated by integrating the three-dimensional equations of equilibrium in the thickness direction, and satisfying the continuity conditions at the interface between layers and stress boundary conditions at the external surfaces. Numerical results are compared with those of the published three-dimensional layerwise theory in which both in-plane and normal displacements are assumed to be C0 continuous in the continuity conditions at the interface between layers. Effects of the difference of displacement continuity conditions between the three-dimensional layerwise theory and the global higher-order theory are clarified in thermal buckling problems of multilayered composite plates.  相似文献   

11.
In this paper, the nonlinear behavior of symmetric and antisymmetric cross ply, thin to moderately thick, elastic rectangular laminated plates resting on nonlinear elastic foundations are studied using differential quadrature method (DQM). The first-order shear deformation theory (FSDT) in conjunction with the Green’s strain and von Karman hypothesis are assumed for modeling the nonlinear behavior. Elastic foundation is modeled as shear deformable with cubic nonlinearity. The differential quadrature (DQ) discretized form of the governing equations with the various types of boundary conditions are derived. The Newton–Raphson iterative scheme is employed to solve the resulting system of nonlinear algebraic equations. Comparisons are made and the convergence studies are performed to show the accuracy of the results even with a few number of grid points. The effects of thickness-to-length ratio, aspect ratio, number of plies, fiber orientation and staking sequence on the nonlinear behavior of cross ply laminated plates with different boundary conditions resting on elastic foundations are studied.  相似文献   

12.
Significance of using higher-order shear deformation theory (HSDT) over the first-order shear deformation theory (FSDT) for analyzing laminated composite stiffened plates is brought out using the finite element method (FEM). For this purpose, a C0 HSDT, is extended for application to stiffened configurations, for linearly elastic static and natural vibration analysis. The spatial displacement fields of both the plate and the stiffener are derived as functions of reference plane variables using Taylor series expansion. The developed computational tool is employed for analyzing systems having varying configurations using the FSDT and two different HSDTs, and their comparative effects are systematically studied, demonstrating the need for using HSDT instead of FSDT, for obtaining accurate structural response of such stiffened configurations.  相似文献   

13.
A higher-order shear deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, Vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.  相似文献   

14.
A V Krishna Murty 《Sadhana》1987,11(3-4):357-365
Formulation of appropriate governing equations, simpler than the three-dimensional equations of elasticity yet capable of predicting, fairly accurately, all important response parameters such as stress and strain, is attempted in modelling a structural component. Several theoretical models are available in the literature for the analyses of plates. The emergence of fibre-reinforced plastics as an attractive form of structural construction, added a new complexity to the modelling considerations of laminates by requiring the estimation of the interlaminar stresses and strains. In this paper, modelling considerations of laminated composite plates are discussed. The classical laminated plate theory and higher-order shear deformation models are reviewed to bring out their interlaminar stress predictive capabilities, and some new modelling possibilities are indicated. This work has been supported by the Aeronautics Research and Development Board, Ministry of Defence, Government of India.  相似文献   

15.
The onset of buckling in square laminated multi-layered composite plates, subject to unidirectional in-plane loads, is investigated within the framework of a generalized higher-order shear deformation theory suitable to capture significant transverse shear and thickness-wise deformation effects. The displacement field is expanded in a Taylor series of the thickness coordinate with arbitrary polynomial degree; in turn, the series coefficients, expressed as a superposition of admissible functions, are determined according to the Rayleigh–Ritz method. Truly higher-order polynomial terms, along with a sufficient number of in-plane admissible functions, are shown to be necessary for convergence towards the fundamental buckling load multiplier. As a by-product, reduced-order models are identified for various plate geometries and lamination schemes. The sensitivity of the lowest buckling load with respect to the nondimensional parameters (the thickness ratio, the ratio between the elastic moduli, the ply angle) is investigated. In particular, the attention is focused on the cross-over phenomenon between the lowest two buckling eigenvalues in multi-layered composite square plates with different lamination schemes. The presented results shed light onto the buckling behavior of thick shear-deformable multi-layered plates.  相似文献   

16.
This paper presents an analytical solution to the static analysis of functionally graded plates, using a recently developed higher order shear deformation theory (HSDT) and provides detailed comparisons with other HSDT’s available in the literature. These theories account for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surfaces, thus a shear correction factor is not required. The mechanical properties of the plates are assumed to vary in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded (FG) plate and boundary conditions are derived by employing the principle of virtual work. Navier-type analytical solution is obtained for FG plates subjected to transverse bi-sinusoidal and distributed loads for simply supported boundary conditions. Results are provided for thick to thin FG plates and for different volume fraction distributions. The accuracy of the present code is verified by comparing it with known results in the literature.  相似文献   

17.
This article presents the formulation of an enriched macro finite element based on the trigonometric shear deformation theory for the static analysis of symmetrically laminated composite plates. Shear correction factor is not required because this theory accounts for tangential stress-free boundary conditions on the plate boundary surfaces. The macro element is obtained using the principle of virtual work and Gram-Schmidt orthogonal polynomials as enrichment functions. The implementation of the obtained algorithm is simple and efficient, and allows studying general quadrilateral plates with a single macro element. Several examples are presented to show the capability and applicability of the developed formulation.  相似文献   

18.
A mathematical apparatus is developed for the analysis of the three-dimensional stress–strain state with small deflections of laminated orthotropic plates of any thickness and non-symmetrical layer structure through the thickness. This theory is based on the representation of the displacement vector in terms of products of the given functions in the direction of the axes x1, x2 and the unknown functions over the axis x3. Both the real and complex roots of the characteristic equation describing the representation of the sought functions through the thickness of the plate are taken into account. Such an approach allows us to expand the scope of physical and mechanical relationships among the material characteristics.  相似文献   

19.
The explicit closed-form local buckling solution of in-plane shear-loaded orthotropic plates with two opposite edges simply supported and other two opposite edges either both rotationally restrained or one rotationally restrained and the other free is presented. Based on the boundary condition of the other two opposite edges, two types of plates are considered: the RR (both the edges rotationally restrained) and RF (one edge restrained and the other free) plate elements. Different plate buckled shape functions are proposed, and the approximate explicit expressions for the buckling loads are derived using the Rayleigh–Ritz method for the plate with the generic rotationally-restrained (R) boundary conditions which can be reduced to two extreme cases, i.e., simply supported (S) and clamped (C). The accuracy of the derived explicit solutions is verified by comparing the predictions with the existing solutions and numerical finite element analysis, and excellent agreements are obtained. The effects of material and boundary restraining parameters on the local shear buckling behavior of the plate elements are discussed. The derived explicit formulas for the shear buckling loads are straightforward, efficient and reliable for preliminary engineering design and analysis of composite structures under primarily shear-dominant loading conditions.  相似文献   

20.
The problem of nonlinear aeroelasticity of a general laminated composite plate in supersonic air flow is examined. The classical plate theory along with the von-Karman nonlinear strains is used for structural modeling, and linear piston theory is used for aerodynamic modeling. The coupled partial differential equations of motion are derived by use of Hamilton’s principle and Galerkin’s method is used to reduce the governing equations to a system of nonlinear ordinary differential equations in time, which are then solved by a direct numerical integration method. Effects of in-plane force, static pressure differential, fiber orientation and aerodynamic damping on the nonlinear aeroelastic behavior of the plate are studied. Results show that the fiber orientation has significant effect on dynamic behavior of the plate and the asymmetric properties, changes the behavior of the limit cycle oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号