首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
为研发耐磨性能优良、成本相对低廉的高铬铸铁,本文分别以亚共晶、过共晶的水雾化Cr15高铬铸铁粉末为原料,采用超固相线液相烧结工艺制备了烧结高铬铸铁(SHCCI),并对其显微组织、力学性能和冲击磨粒磨损工况下的耐磨性能进行对比研究。结果表明,烧结高铬铸铁主要由M7C3碳化物、马氏体和奥氏体组成;在亚共晶烧结高铬铸铁中,通过电解腐蚀萃取的M7C3碳化物三维形貌呈珊瑚状,沿晶界均匀分布,材料抗冲击耐磨性能优良;在过共晶烧结高铬铸铁中,优先形成的初生碳化物可能成为共晶碳化物的生长基底,形成核-壳结构的M7C3碳化物,沿晶界相互连接呈网状,严重割裂基体。亚共晶、过共晶烧结高铬铸铁的力学性能分别为:硬度HRC63.9、HRC64.3,冲击韧性7.92、3.04 J/cm^2,抗弯强度2112.65、1624.87 MPa。  相似文献   

2.
研究电脉冲处理对铸态W6Mo5Cr4V2高速钢组织的影响及其机理,利用光学显微镜、XRD和EDS观察成分和微观组织的变化。结果表明:铸态高速钢的微观组织主要由MC,M_2C和M_7C_3碳化物和马氏体、奥氏体、珠光体混合组成,碳化物在晶界处呈连续的网状分布,存在部分鱼骨状共晶碳化物;经过脉冲电流处理后,碳化物的物相种类未发生变化,但形态上由网状趋向于断裂,有明显的孤立和球化趋势,鱼骨状共晶碳化物消失,同时,碳化物含量减少,而基体中合金元素含量增加,基体的硬度提高。焦耳热和电磁力偶合物理效应是造成这些现象的主要机理。  相似文献   

3.
采用CO_2连续波激光对W18Cr4V高速钢进行表面重熔处理。分析结果表明,经激光重熔后高速钢的显微组织明显细化,重熔层内的相构成为马氏体、奥氏体,过剩的δ铁素体和M_6C、M_(23)C_6型碳化物。枝晶内为孪晶马氏体和部分板条马氏体。枝晶间为富合金元素的奥氏体和M_6C碳化物,孪晶马氏体上沿孪晶面有M_(23)C_6碳化物共格析出。激光扫描速度增加、δ铁素体量增多,重熔层显微硬度下降。  相似文献   

4.
4Cr14Ni14W2Mo钢的奥氏体晶粒度和孪晶及碳化物   总被引:1,自引:0,他引:1  
对锻造的4Cr14Ni14W2Mo钢经相应热处理后的奥氏体晶粒度、孪晶及碳化物类型进行了研究。认为固溶处理后的奥氏体晶粒度主要取决于固溶加热温度,与锻造温度关系不大。固溶加热过程实质是再结晶过程的继续,即二次再结晶。奥氏体晶粒的大小只能通过控制再结晶温度的高低和时间长短来实现。该钢热处理后,碳化物类型为M_(23)C_6和M_7C_3两种,而以M_(23)C_6居多。其中M_(23)C_6为(Cr、Fe、W、Mo)_(23)C_6和(Fe、Ni)_(23)C_6两种结构,而M_7C_3为(Cr、Fe)_7C_3。  相似文献   

5.
为获得以奥氏体为基体且韧性及耐磨性良好的明弧堆焊合金,采用药芯焊丝自保护明弧焊方法制备了以奥氏体为基体的Fe-C-Mn-Cr-Nb-V-Ti系多元耐磨合金,借助X射线衍射仪、扫描电镜及其附属能谱仪等测试手段,研究了Si含量对其组织和耐磨性的影响。结果表明:堆焊合金基体为γ-Fe,硬质相有(Fe,Cr,Mn,V)_(23)C_6,(Nb,Ti)C和(Fe,Cr)_3(C,B)等;当堆焊合金含1.5%Si(质量分数)时,出现了沿晶(Fe,Cr,Mn,V)_7C_3相;随着Si含量提高,沿晶界分布的(Fe,Cr,Mn,V)_(23)C_6型碳化物数量先增加然后减少,形态从树枝骨架状变为层片状离散孤立分布,胞状γ-Fe晶内原位析出的(Nb,Ti,V)C复合碳化物随之增大,堆焊合金耐磨性呈先提高后下降再提高的趋势;0.9%Si和1.5%Si堆焊合金试样的磨损质量损失低于一般高铬铸铁,具有良好的耐磨性和韧性,其磨损机制主要为磨粒的显微切削。  相似文献   

6.
为提高中铬铸铁共晶碳化物中M7C3比例,研究了中铬硅铸铁(290Cr8Si2).建立了铸态中铬硅铸铁基体的价电子结构,运用固体与分子经验电子理论(EET)分析了中铬硅铸铁中Si的作用.分析和实验结果表明,中铬硅铸铁基体含C、Cr、Si的γ-Fe晶胞中,C原子与Si原子的结合力强于C原子与Cr原子的结合力,较高的含Si量降低了铸铁基体的含Cr量,提高了共晶碳化物的含Cr量,进而提高了共晶碳化物中M7C3的比例.耐磨损中铬硅铸铁(290Cr8Si2)共晶碳化物(M7C3 M3C)中M7C3占94.2%(体积分数),明显高于中铬铸铁(290Cr8Si1)共晶碳化物中的M7C3的71.7%(体积分数).  相似文献   

7.
对经定向凝固的共晶 Fe—2.94%C—29.1%Cr 合金及过共晶 Fe—3.12%C—35.9%Cr、Fe—2.80%C—33.1%Cr 合金的凝固组织作了研究。上述三种合金中的初晶及共晶碳化物均为(Fe,Cr)_7C_3它们都以小面状析出,其中初晶在与凝固方向垂直的截面上为六角形块。初晶碳化物在定向凝固时以六角形状进行包抄式的凝固,然后再从六角形壳向内凝固,最终生成完整六角形。随着凝固速度变小,初晶(Fe,Cr)_7C_3的截面尺寸及间距增大,且从实心的六角形棒变成空心的六角形棒。过共晶合金的液固两相区长度约为1.5mm。共晶合金凝固时,碳化物的形貌为不规则多边形棒,且在凝固速度大时,组织细小。上述三种合金,当凝固速度 R>2m/sec 时,液固界面将变得凹凸不平。  相似文献   

8.
目前,有关淬火后回火温度对Cr26高铬铸铁组织及性能的研究报道不多。为此,采用XRD、OM、SEM、TEM和电子拉力试验机和洛式硬度计,研究了回火温度对Cr26高铬铸铁调质处理前后的显微组织和力学性能的影响。结果表明:调质处理前Cr26高铬铸铁中碳化物类型有M_7C_3、M_(23)C_6和M_3C_2;调质处理后Cr26高铬铸铁的显微组织得到明显改善,基体上弥散分布着细小的碳化物;抗拉强度和硬度值随回火温度的增加而降低,延伸率有所提高;回火温度为560℃左右时,抗拉强度、延伸率和硬度值分别为1 294 MPa、8.02%和38.6 HRC,有良好的力学性能。  相似文献   

9.
奥氏体 FeCr18.2Ni6.9Mo2.5C1.5合金时效时可产生明显的二次硬化效果。在时效过程中除有M_(23)C_6碳化物沉淀析出外,还有体心相形成。经差热分析、x 射线衍射分析和电子衍射分析证明该体心楣为加热过程中形成的铁素体,但往往会被误认为二次淬火时形成的马氏体。高温硬度试验证明二次硬化效果是由 M_(23)C_6碳化物形成引起的。  相似文献   

10.
高铬铸铁中残余奥氏体的X射线衍射定量分析   总被引:2,自引:0,他引:2  
为了消除高铬铸铁中碳化物对残余奥氏体定量的影响,采用电解方法定量萃取高铬铸铁中的碳化物。经X射线衍射分析,碳化物为(Cr,Fe)7C3。选择碳化物的(411)晶面衍射强度作为标准,测量其它峰的相对衍射强度,得出马氏体与奥氏体(200)晶面的衍射强度校正因子分别为0.12和0.44。校正了碳化物对奥氏体定量分析的影响,可提高测量精度10%以上。  相似文献   

11.
EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃ and destabilisation at 1075℃ plus tempering at 500℃, all followed by air cooling. Electron microscopy revealed that, in the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Tempering did not change the microstructure significantly when observed by scanning or transmission electron microscopy. Destabilisation followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite. Precipitation behaviour is comparable to that observed in the conventionally cast iron. Tempering after destabilisation resulted in a higher amount of secondary carbide precipitation within the tempered martensite in the eutectic structure. Vickers macrohardness and microhardness in the proeutectic zones were measured. Dry wear properties were tested by using a pin-on-disc method. The maximum hardness and the lowest dry wear rate were obtained from the destabilisation-plus-tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.  相似文献   

12.
A semi-solid processed 27 wt%Cr cast iron was studied by electron microscopy and its microstructure was related to the hardness. In the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Growth in the [0 0 1]M7C3 with planar faces of {0 2 0}M7C3 and was usually observed with an encapsulated core of austenite. Destabilisation heat treatment followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite in the semi-solid processed iron. Precipitation behaviour is comparable to that observed in the destabilisation of conventional cast iron. However, the nucleation of secondary M23C6 carbide on the eutectic M7C3 carbide was observed for the first time. Tempering after destabilisation led to further precipitation of carbide within the tempered martensite in the eutectic structure. The maximum hardness was obtained after destabilisation and tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.  相似文献   

13.
The High speed cast iron, which is used for hot rolling parts, needs high fracture toughness and wear resistance. To improve these properties, the control of eutectic carbides, M3C, M7C3,M6C and MC is important by adding elements such as Cr, W, V and Mo.

The aim of this study is to estimate which carbide will solidify under certain solidification conditions and compositions. This prediction criterion can be gained by measuring the interface temperature of each carbide in various samples with different solute elements, composition and growth rate.

In this report, the solidified temperature of γ + M2C and γ + M6C eutectic carbide in the Fe–Mo–C ternary system in the composition range near to the eutectic monovariant line, was measured during the unidirectional solidiication process. The relationship between solidified interface temperature and growth rate was obtained. In eutectic solidification along the γ + M6C monovariant line, a coefficient of undercooling, the k value, was obtained.

The authors have already measured the k values of other eutectic carbides, such as γ + M3C, austenite + M7C3, and γ + VC in Fe–Cr–C and Fe–V–C system. The paper also discusses the relationships between these properties of eutectic carbides.  相似文献   

14.
The High speed cast iron, which is used for hot rolling parts, needs high fracture toughness and wear resistance. To improve these properties, the control of eutectic carbides, M3C, M7C3, M6C and MC is important by adding elements such as Cr, W, V and Mo.The aim of this study is to estimate which carbide will solidify under certain solidification conditions and compositions. This prediction criterion can be gained by measuring the interface temperature of each carbide in various samples with different solute elements, composition and growth rate.In this report, the solidified temperature of γ+M2C and γ+M6C eutectic carbide in the Fe–Mo–C ternary system in the composition range near to the eutectic monovariant line, was measured during the unidirectional solidification process. The relationship between solidified interface temperature and growth rate was obtained. In eutectic solidification along the γ+M6C monovariant line, a coefficient of undercooling, the k value, was obtained.The authors have already measured the k values of other eutectic carbides, such as γ+M3C, austenite+M7C3, and γ+VC in Fe–Cr–C and Fe–V–C system. The paper also discusses the relationships between these properties of eutectic carbides.  相似文献   

15.
Abstract

The effect of the volume fraction of eutectic carbides on the thermal fatigue resistance of multicomponent white cast iron has been investigated. Thermal fatigue tests were carried out for 100 and 500 cycles. Nucleation of thermal fatigue cracks took place mostly at the specimen surface, induced by mechanical and metallurgical stress raisers. The crack nucleated in the matrix as well as at the carbide/matrix interface or at the carbide itself. The surface crack density increased slightly for increasing volume fraction of eutectic carbides from 9 to 14%, approximately. Crack propagation took place mostly at the carbide/matrix interface or through the carbide. The propagation rate was affected by the carbide distribution: the higher was the 'carbide continuity/mean free path between carbides' ratio, the higher was the propagation rate. The propagation rate decreased with increasing test time, regardless of the volume fraction of eutectic carbides.  相似文献   

16.
The microstructures, hardness and corrosion behavior of high chromium cast irons with 20, 27 and 36 wt.%Cr have been compared. The matrix in as-cast 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr high chromium cast irons is pearlite, austenite and ferrite, respectively. The eutectic carbide in all cases is M7C3 with stoichiometry as (Cr3.37, Fe3.63)C3, (Cr4.75, Fe2.25)C3 and (Cr5.55, Fe1.45)C3, respectively. After destabilization at 1000 °C for 4 h followed by forced air cooling, the microstructure of heat-treatable 20 wt.%Cr and 27 wt.%Cr high chromium cast irons consisted of precipitated secondary carbides within a martensite matrix, with the eutectic carbides remaining unchanged. The type of the secondary carbide is M7C3 in 20 wt.%Cr iron, whereas both M23C6 and M7C3 secondary carbides are present in the 27 wt.%Cr high chromium cast iron. The size and volume fraction of the secondary carbides in 20 wt.%Cr high chromium cast iron were higher than for 27 wt.%Cr high chromium cast iron. The hardness of heat-treated 20 wt.%Cr high chromium cast iron was higher than that of heat-treated 27 wt.%Cr high chromium cast iron. Anodic polarisation tests showed that a passive film can form faster in the 27 wt.%Cr high chromium cast iron than in the 20 wt.%Cr high chromium cast iron, and the ferritic matrix in 36 wt.%Cr high chromium cast iron was the most corrosion resistant in that it exhibited a wider passive range and lower current density than the pearlitic or austenitic/martensitic matrices in 20 wt.%Cr and 27 wt.%Cr high chromium cast irons. For both the 20 wt.%Cr and the 27 wt.%Cr high chromium cast irons, destabilization heat treatment gave a slight improvement in corrosion resistance.  相似文献   

17.
The influence of vanadium on wear resistance under low-stress conditions and on the dynamic fracture toughness of high chromium white cast iron was examined in both the ascast condition and after heat treatment at 500 °C. A vanadium content varying from 0.12 to 4.73% was added to a basic Fe-C-Cr alloy containing 2.9 or 19% Cr. By increasing the content of vanadium in the alloy, the structure became finer, i.e. the spacing between austenite dendrite arms and the size of massive M7C3 carbides was reduced. The distance between carbide particles was also reduced, while the volume fraction of eutectic M7C3 and V6C5 carbides increased. The morphology of eutectic colonies also changed. In addition, the amount of very fine M23C6 carbide particles precipitated in austenite and the degree of martensitic transformation depended on the content of vanadium in the alloy. Because this strong carbide-forming element changed the microstructure characteristics of high chromium white iron, it was expected to influence wear resistance and fracture toughness. By adding 1.19% vanadium, toughness was expected to improve by approximately 20% and wear resistance by 10%. The higher fracture toughness was attributed to strain-induced strengthening during fracture, and thereby an additional increment of energy, since very fine secondary carbide particles were present in a mainly austenitic matrix. An Fe-C-Cr-V alloy containing 3.28% V showed the highest abrasion resistance, 27% higher than a basic Fe-C-Cr alloy. A higher carbide phase volume fraction, a finer and more uniform structure, a smaller distance between M7C3 carbide particles and a change in the morphology of eutectic colonies were primarily responsible for improving wear resistance.  相似文献   

18.
Duplex microstructures of iron-base superalloys, consisting of an austenitic matrix and a M7C3 carbide, can be produced within the Fe-Mn-Cr-Mo-Al (Si)-C systems. The stability regions of the carbides were inspected by means of isothermal sections of alloys in the quinary combination Fe-Mn-Cr-Mo-C for 70 at% metal and 30 at % carbon. For 35 at % iron the competing carbides are found to be M2C, M3C and the molybdenum cementite (MoFe2C) in the arc-melted state, with M23C6 in the annealed state. In the quaternary system, Fe-Mn-Mo-C, a M2C carbide forms, presumaby derived from a solid solution carbide, (Mn, Mo)2C. In extracted carbides of cast alloys containing Fe-Mn-Cr-Mo-Al (Si)-C a considerable amount of the -phase carbide occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号