首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few prospective studies exist on indoor and outdoor air pollution in relation to adolescent rhinitis. We studied associations between onset and remission of rhinitis among junior high school students in relation to the home and school environment. A 2‐year questionnaire cohort study was performed among 1325 students (11‐15 years) in eight schools in Taiyuan, Northern China. Climate and air pollution were measured by direct reading instruments and passive samplers inside and outside the schools at baseline. Associations were calculated by multilevel logistic regression. Two‐year onset of rhinitis and weekly rhinitis were 26.7% and 13.1%, respectively. RH (P < 0.001), CO2 (P < 0.01) and PM10 (P < 0.01) in the classrooms, PM10 (P < 0.01) and NO2 (P < 0.05) outside the schools, and redecoration (OR = 2.25) and dampness/indoor mold at home (OR = 2.04) were associated with onset of weekly rhinitis. RH (P < 0.05) and CO2 (P < 0.05) in the classroom and dampness/indoor mold (OR = 0.67) and environmental tobacco smoke (ETS) at home (OR = 0.63) reduced remission of rhinitis. In conclusion, dampness/mold and chemical emissions from new materials at home can increase onset of rhinitis and ETS and dampness/mold can reduce the remission. PM10, RH, CO2, and NO2 at school can increase the onset, and RH and CO2 can reduce the remission of rhinitis.  相似文献   

2.
Inadequate ventilation of classrooms may lead to increased concentrations of pollutants generated indoors in schools. The FRESH study, on the effects of increased classroom ventilation on indoor air quality, was performed in 18 naturally ventilated classrooms of 17 primary schools in the Netherlands during the heating seasons of 2010–2012. In 12 classrooms, ventilation was increased to targeted CO2 concentrations of 800 or 1200 ppm, using a temporary CO2 controlled mechanical ventilation system. Six classrooms were included as controls. In each classroom, data on endotoxin, β(1,3)‐glucans, and particles with diameters of <10 μm (PM10) and <2.5 μm (PM2.5) and nitrogen dioxide (NO2) were collected during three consecutive weeks. Associations between the intervention and these measured indoor air pollution levels were assessed using mixed models, with random classroom effects. The intervention lowered endotoxin and β(1,3)‐glucan levels and PM10 concentrations significantly. PM10 for instance was reduced by 25 μg/m³ (95% confidence interval 13–38 μg/m³) from 54 μg/m³ at maximum ventilation rate. No significant differences were found between the two ventilation settings. Concentrations of PM2.5 and NO2 were not affected by the intervention. Our results provide evidence that increasing classroom ventilation is effective in decreasing the concentrations of some indoor‐generated pollutants.  相似文献   

3.
A total of 15 classrooms went through on‐site assessments/inspections, including measurements of temperature (T), and concentrations of carbon monoxide (CO) and carbon dioxide (CO2). In addition, the level of surface biocontamination/cleaning effectiveness was assessed by measuring adenosine triphosphate (ATP) levels on students' desks. Based on the data, the quality of facilities in the buildings was low. Classroom occupancy exceeded ASHRAE 50 person/100 m2 standard in all cases indicating overcrowding. However, concentrations of CO2 remained below 1000 ppm in most classrooms. On the other hand, indoor T was above the recommended levels for thermal comfort in all classrooms. Maximum indoor CO was 6 ppm. Median ATP concentrations on the desk tops were moderately high in all schools. The use of open incinerators and power generator sets near classrooms, which was suspected to be the main source of CO, should be discouraged. Improved hygiene could be achieved by providing the students access to functioning bathroom facilities and cafeteria, and by effective cleaning of high contact surfaces such as desks. Although ventilation seems adequate based on CO2 concentrations, thermal comfort was not attained especially in the afternoon during extreme sunlight. Therefore, installing passive and/or mechanical cooling systems should be considered in this regard.  相似文献   

4.
Air flow and the associated indoor carbon dioxide concentrations have been extensively monitored in 62 classrooms of 27 naturally ventilated schools in Athens, Greece. The specific ventilation patterns as well as the associated carbon dioxide concentrations, before, during and after the teaching period are analysed in detail. During the teaching period, only 23% of the measured classrooms presented a flow rate higher than the recommended value of 8 l/p/s while the mean daily fluctuation was close to 40%. About, 52% of the classrooms presented a mean indoor CO2 concentration higher than 1000 ppm. The specific experimental data have been compared against existing ventilation rates and carbon dioxide concentrations using published information from 287 classrooms of 182 naturally ventilated schools and 900 classrooms from 220 mechanically ventilated schools. The relation between the air flow rates and the corresponding indoor carbon dioxide is analysed and then compared to the existing data from naturally and mechanically ventilated schools. It is found that all three data sets present a CO2 concentration equal to 1000 ppm for air flows around 8 l/p/s. Specific adaptive actions to improve the indoor environmental quality have been recorded and the impact of indoor and ambient temperatures as well as of the carbon dioxide concentration on window opening is analysed in detail. A clear relation is found, between the indoor temperature at which the adapting action takes place and the resulting air flow rate. In parallel, a statistically significant relation between window opening and the indoor–outdoor temperature difference has been established.  相似文献   

5.
The purpose of this study was to examine the effects on humans of exposure to carbon dioxide (CO2) and bioeffluents. In three of the five exposures, the outdoor air supply rate was high enough to remove bioeffluents, resulting in a CO2 level of 500 ppm. Chemically pure CO2 was added to this reference condition to create exposure conditions with CO2 at 1000 or 3000 ppm. In two further conditions, the outdoor air supply rate was restricted so that the bioeffluent CO2 reached 1000 or 3000 ppm. The same 25 subjects were exposed for 255 min to each condition. Subjective ratings, physiological responses, and cognitive performance were measured. No statistically significant effects on perceived air quality, acute health symptoms, or cognitive performance were seen during exposures when CO2 was added. Exposures to bioeffluents with CO2 at 3000 ppm reduced perceived air quality; increased the intensity of reported headache, fatigue, sleepiness, and difficulty in thinking clearly; and reduced speed of addition, the response time in a redirection task, and the number of correct links made in the cue‐utilization test. This suggests that moderate concentrations of bioeffluents, but not pure CO2, will result in deleterious effects on occupants during typical indoor exposures.  相似文献   

6.
Most previous research on indoor environments and health has studied school children or occupants in non‐school settings. This investigation assessed building‐related health symptoms and classroom characteristics via telephone survey of New York State school teachers. Participants were asked about 14 building‐related symptoms and 23 classroom characteristics potentially related to poor indoor air quality (IAQ). Poisson regression analysis was used to assess the relationship between these symptoms and each classroom characteristic, controlling for potential confounders. About 500 teachers completed the survey. The most frequently reported classroom characteristics included open shelving (70.7%), food eaten in class (65.5%), dust (59.1%), and carpeting (46.9%). The most commonly reported symptoms included sinus problems (16.8%), headache (15.0%), allergies/congestion (14.8%), and throat irritation (14.6%). Experiencing one or more symptoms was associated most strongly with reported dust (relative risk (RR) = 3.67; 95% confidence interval (CI): 2.62–5.13), dust reservoirs (RR = 2.13; 95% CI: 1.72–2.65), paint odors (RR = 1.73; 95% CI: 1.40–2.13), mold (RR = 1.71; 95% CI: 1.39–2.11), and moldy odors (RR = 1.65 95% CI: 1.30–2.10). Stronger associations were found with increasing numbers of reported IAQ‐related classroom characteristics. Similar results were found with having any building‐related allergic/respiratory symptom. This research adds to the body of evidence underscoring the importance to occupant health of school IAQ.  相似文献   

7.
Carbon dioxide (CO2) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2‐week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1 week and open them, as they would normally do, without visual feedback, in the other week. In the heating season, two pairs of classrooms were monitored, one pair naturally and the other pair mechanically ventilated. In the cooling season, two pairs of naturally ventilated classrooms were monitored, one pair with split cooling in operation and the other pair with no cooling. Classrooms were matched by grade. Providing visual CO2 feedback reduced CO2 levels, as more windows were opened in this condition. This increased energy use for heating and reduced the cooling requirement in summertime. Split cooling reduced the frequency of window opening only when no visual CO2 feedback was present.  相似文献   

8.
The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non‐heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission.  相似文献   

9.
Limited evidence has associated lower ventilation rates (VRs) in schools with reduced student learning or achievement. We analyzed longitudinal data collected over two school years from 150 classrooms in 28 schools within three California school districts. We estimated daily classroom VRs from real‐time indoor carbon dioxide measured by web‐connected sensors. School districts provided individual‐level scores on standard tests in Math and English, and classroom‐level demographic data. Analyses assessing learning effects used two VR metrics: average VRs for 30 days prior to tests, and proportion of prior daily VRs above specified thresholds during the year. We estimated relationships between scores and VR metrics in multivariate models with generalized estimating equations. All school districts had median school‐year VRs below the California VR standard. Most models showed some positive associations of VRs with test scores; however, estimates varied in magnitude and few 95% confidence intervals excluded the null. Combined‐district models estimated statistically significant increases of 0.6 points (P = 0.01) on English tests for each 10% increase in prior 30‐day VRs. Estimated increases in Math were of similar magnitude but not statistically significant. Findings suggest potential small positive associations between classroom VRs and learning.  相似文献   

10.
Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5, PM10, bacteria and fungi, carbon dioxide (CO2), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m3) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools.  相似文献   

11.
Abstract Five classrooms, air-conditioned or naturally ventilated, at five different schools were chosen for comparison of indoor and outdoor air quality. Temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), particulate matter with diameter less than 10 mm (PM10), formaldehyde (HCHO), and total bacteria counts were monitored at indoor and outdoor locations simultaneously. Respirable particulate matter was found to be the worst among parameters measured in this study. The indoor and outdoor average PM10 concentrations exceeded the Hong Kong standards, and the maximum indoor PM10 level was even at 472 μ;g/m3. Air cleaners could be used in classrooms to reduce the high PM10 concentration. Indoor CO2 concentrations often exceeded 1,000 μl/l indicating inadequate ventilation. Lowering the occupancy and increasing breaks between classes could alleviate the high CO2 concentrations. Though the maximum indoor CO2 level reached 5,900 μl/l during class at one of the sites, CO2 concentrations were still at levels that pose no health threats.  相似文献   

12.
Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P < 0.05) with a 0.5-0.9% decrease in annual average daily attendance (ADA), corresponding to a relative 10-20% increase in student absence. Annual ADA was 2% higher (P < 0.0001) in traditional than in portable classrooms. PRACTICAL IMPLICATIONS: This study provides motivation for larger school studies to investigate associations of student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.  相似文献   

13.
Twenty‐five subjects were exposed to different levels of carbon dioxide (CO2) and bioeffluents. The ventilation rate was set high enough to create a reference condition of 500 ppm CO2 with subjects present; additional CO2 was then added to supply air to reach levels of 1000 or 3000 ppm, or the ventilation rate was reduced to allow metabolically generated CO2 to reach the same two levels (bioeffluents increased as well). Heart rate, blood pressure, end‐tidal CO2 (ETCO2), oxygen saturation of blood (SPO2), respiration rate, nasal peak flow, and forced expiration were monitored, and the levels of salivary α‐amylase and cortisol were analyzed. The subjects performed a number of mental tasks during exposures and assessed their levels of comfort and the intensity of their acute health symptoms. During exposure to CO2 at 3000 ppm, when CO2 was added or ventilation was restricted, ETCO2 increased more and heart rate decreased less than the changes that occurred in the reference condition. Exposure to bioeffluents, when metabolically generated CO2 was at 3000 ppm, significantly increased diastolic blood pressure and salivary α‐amylase level compared with pre‐exposure levels, and reduced the performance of a cue‐utilization test: These effects may suggest higher arousal/stress. A model is proposed describing how mental performance is affected by exposure to bioeffluents.  相似文献   

14.
A previous study showed that classical building-related symptoms (BRS) were related to indoor dust and microbial toxicity via boar sperm motility assay, a sensitive method for measuring mitochondrial toxicity. In this cross-sectional study, we analyzed whether teachers’ most common work-related non-literature-known BRS (nBRS) were also associated with dust or microbial toxicity. Teachers from 15 schools in Finland completed a questionnaire evaluating 20 nBRS including general, eye, respiratory, hearing, sleep, and mental symptoms. Boar sperm motility assay was used to measure the toxicity of extracts from wiped dust and microbial fallout samples collected from teachers’ classrooms. 231 teachers answered a questionnaire and their classroom toxicity data were recorded. A negative binomial mixed model showed that teachers’ work-related nBRS were 2.9-fold (95% CI: 1.2-7.3) higher in classrooms with highly toxic dust samples compared to classrooms with non-toxic dust samples (p = 0.024). The RR of work-related nBRS was 1.8 (95% CI: 1.1-2.9) for toxic microbial samples (p = 0.022). Teachers’ BRS appeared to be broader than reported in the literature, and the work-related nBRS were associated with toxic dusts and microbes in classrooms.  相似文献   

15.
This study aimed at surveying lower secondary schools in southern Italy, in a highly polluted area. A community close to an industrial area and three villages in rural areas was investigated. Indoor temperature, relative humidity (RH), gaseous pollutants (CO2 and NO2), selected biological pollutants in indoor dust, and the indoor/outdoor mass concentration and elemental composition of PM2.5 were ascertained. Temperature and RH were within, or close to, the comfort range, while CO2 frequently exceeded the threshold of 1000 ppm, indicating inadequate air exchange rate. In all the classrooms, median NO2 levels were above the WHO threshold value. Dermatophagoides p. allergen concentration was below the sensitizing threshold, while high endotoxin levels were detected in the classrooms, suggesting schools may produce significant risks of endotoxin exposure. Concentration and solubility of PM2.5 elements were used to identify the sources of indoor particles. Indoor concentration of most elements was higher than outdoors. Resuspension was responsible for the indoor increase in soil components. For elements from industrial emission (Cd, Co, Ni, Pb, Sb, Tl, V), the indoor concentration depended on penetration from the outside. For these elements, differences in rural vs industrial concentrations were found, suggesting industrial sources may influence indoor air quality nearby schools.  相似文献   

16.
Nitrogen dioxide (NO2), a by‐product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three‐armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high‐efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre‐intervention and at 1 week and 3 months post‐intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow‐up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P < 0.01) and bedroom (22%, P = 0.02), but at 3 months, a significant reduction was seen only in the kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes.  相似文献   

17.
In a business as usual scenario, atmospheric carbon dioxide concentration (CO2) could reach 950 parts per million (ppm) by 2100. Indoor CO2 concentrations will rise consequently, given its dependence on atmospheric CO2 levels. If buildings are ventilated following current standards in 2100, indoor CO2 concentration could be over 1300 ppm, depending on specific ventilation codes. Such exposure to CO2 could have physiological and psychological effects on building occupants. We conducted a randomized, within-subject study, examining the physiological effects on the respiratory functions of 15 persons. We examined three exposures, each 150 min long, with CO2 of: 900 ppm (reference), 1450 ppm (decreased ventilation), and 1450 ppm (reference condition with added pure CO2). We measured respiratory parameters with capnometry and forced vital capacity (FVC) tests. End-tidal CO2 and respiration rates did not significantly differ across the three exposures. Parameters measured using FVC decreased significantly from the start to the end of exposure only at the reduced ventilation condition (p < 0.04, large effect size). Hence, poor ventilation likely affects respiratory parameters. This effect is probably not caused by increased CO2 alone and rather by other pollutants—predominantly human bioeffluents in this work—whose concentrations increased as a result.  相似文献   

18.
Both high and low indoor relative humidity (RH) directly impact Indoor Air Quality (IAQ), an important school health concern. Prior school studies reported a high prevalence of mold, roaches, and water damage; however, few examined associations between modifiable classroom factors and RH, a quantitative indicator of dampness. We recorded RH longitudinally in 134 North Carolina classrooms (n = 9066 classroom‐days) to quantify the relationships between modifiable classroom factors and average daily RH below, within, or above levels recommended to improve school IAQ (30–50% or 30–60% RH). The odds of having high RH (>60%) were 5.8 [95% Confidence Interval (CI): 2.9, 11.3] times higher in classrooms with annual compared to quarterly heating, ventilating, and air‐conditioning (HVAC) system maintenance and 2.5 (95% CI: 1.5, 4.2) times higher in classrooms with HVAC economizers compared to those without economizers. Classrooms with direct‐expansion split systems compared to chilled water systems had 2.7 (95% CI: 1.7, 4.4) times higher odds of low RH (<30%). When unoccupied, classrooms with thermostat setbacks had 3.7 (95% CI: 1.7, 8.3) times the odds of high RH (>60%) of those without setbacks. This research suggests actionable decision points for school design and maintenance to prevent high or low classroom RH.  相似文献   

19.
Investigations on indoor environmental conditions and natural ventilation in school buildings. There are more than 40,000 school buildings in Germany. Most of them are awaiting retrofitting. Retrofitting is not only intended to improve the energetic standards, but first of all to improve indoor environmental conditions for pupils and teachers. As most of German schools are not equipped with mechanical ventilation systems, natural ventilation controlled by the occupants opening the windows is the main way to maintain healthy and comfortable conditions in the classrooms. For that purpose the influence of window opening behaviour of the occupants on the indoor environment was measured in two German schools. Temperature and carbon dioxide concentration of the indoor air as well as the outdoor climate conditions were measured. In one school the frequency of window opening was recorded. Besides high CO2‐concentrations especially during winter, some of the investigated classrooms are additionally to cold in winter or to hot in summer. Some classrooms do not have a shading device or the shading device is insufficient or it constricts the ventilation of the room. Windows are used as controls in some degree during lessons and during the breaks. But windows get closed after lessons and stay closed until next morning. There is no night or early morning ventilation in summer. A significant weak to moderate positive correlation between total open window ratio and indoor temperature has been found. Correlation between total open window ratio and outdoor temperature is not significant in most cases or show a weak correlation coefficient.  相似文献   

20.
The role of ventilation in preventing tuberculosis (TB) transmission has been widely proposed in infection control guidance. However, conclusive evidence is lacking. Modeling suggested the threshold of ventilation rate to reduce effective reproductive ratio (ratio between new secondary infectious cases and source cases) of TB to below 1 is corresponding to a carbon dioxide (CO2) level of 1000 parts per million (ppm). Here, we measured the effect of improving ventilation rate on a TB outbreak involving 27 TB cases and 1665 contacts in underventilated university buildings. Ventilation engineering decreased the maximum CO2 levels from 3204 ± 50 ppm to 591-603 ppm. Thereafter, the secondary attack rate of new contacts in university dropped to zero (mean follow-up duration: 5.9 years). Exposure to source TB cases under CO2 >1000 ppm indoor environment was a significant risk factor for contacts to become new infectious TB cases (P < .001). After adjusting for effects of contact investigation and latent TB infection treatment, improving ventilation rate to levels with CO2 <1000 ppm was independently associated with a 97% decrease (95% CI: 50%-99.9%) in the incidence of TB among contacts. These results show that maintaining adequate indoor ventilation could be a highly effective strategy for controlling TB outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号