首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 968 毫秒
1.
报道了GaAs/AlAs的电感耦合等离子体(ICP)选择性干法刻蚀,刻蚀气体为SiCl4/SF6混合物.研究了在不同SiCl4/SF6气体配比、RF偏压电源功率和气室压力下,GaAs,AlAs的平均刻蚀速率与二者的选择比.合适的SiCl4/SF6气体比例(15/5sccm),低的RF偏压电源功率和高的气室压力将加强AlF3非挥发性生成物的形成,进而提高GaAs/AlAs的选择比.在SiCl4/SF6气体比例为15/5sccm,RF偏压电源功率为10W,主电源功率为500W,气室压力为2Pa时,GaAs/Al-As的选择比达1500以上.采用喇曼光谱仪对不同RF偏压电源功率和气室压力下,GaAs衬底被刻蚀面等离子体损伤进行了测试,表面形貌和被刻蚀侧壁分别采用原子力显微镜(AFM)和扫描电镜(SEM)进行观察.  相似文献   

2.
分别采用 Cl2/Ar和SiCl4/Ar作为刻蚀气体对InAs/GaSb二类超晶格红外探测材料进行ICP(Inductively Couple Plasma)刻蚀。结果表明,两种刻蚀气体的刻蚀深度与刻蚀时间都呈线性关系;在2 mTorr气压下,RF功率为50 W,SiCl4流量为3 sccm,Ar为9 sccm时,刻蚀速率为100 nm/min,且与材料的掺杂浓度无关。实验还表明,SiCl4/Ar作为刻蚀气体时,Ar流量在很大范围内对刻蚀速率没用明显影响,但Ar的流量越大,刻蚀的均匀性越好;用Cl2/Ar作为刻蚀气体时,刻蚀速率也是100 nm/min,但Ar流量对刻蚀速率有影响:当Ar流量小于3 sccm时,刻蚀速率随Ar流量的减小而明显降低。  相似文献   

3.
硅深槽ICP刻蚀中刻蚀条件对形貌的影响   总被引:2,自引:0,他引:2  
以SF6/C2 H4为刻蚀气体,使用Corial200IL感应耦合等离子体(ICP)刻蚀系统,进行Si等离子刻蚀技术研究.通过调节刻蚀气体SF6与侧壁钝化保护气体C2H4的流量比和绝对值等工艺参数,对深Si刻蚀的形貌以及侧壁钻蚀情况进行改善,使该设备能够满足深硅刻蚀的基本要求,解决MEMS工艺及TSV工艺中的深硅刻蚀问题.实验结果表明,Corial200IL系统用SF6作等离子体刻蚀气体,对Si的刻蚀具有各向同性;C2H4作钝化气体,能够对刻蚀侧壁进行有效的保护,但由于C2H4的含量直接影响刻蚀速率和选择比,需对其含量及配比严格控制.研究结果为:SF6含量为40 sccm、C2H4含量为15 sccm时能够有效控制侧壁钻蚀,且具有较大的选择比,初步满足深硅槽刻蚀的条件.  相似文献   

4.
李悦 《压电与声光》2014,36(5):782-785
直流自我偏压作为高密度射频(RF)等离子体刻蚀工艺中的重要电学参数,反映出具有高能量的离子对待刻蚀晶片的轰击效果,后者决定了刻蚀工艺的各向异性、刻蚀速率、选择比及形貌特征等工艺结果。该文以HBr作为刻蚀气体,采用电感耦合等离子体(ICP)金属刻蚀系统针对刻蚀工艺中的直流自我偏压进行研究。研究中分别改变离子源功率、衬底偏压功率、刻蚀压力及HBr气体流量,观察直流自我偏压及其峰值的相应变化规律。实验结果表明,随着离子源功率的升高,直流自我偏压将会轻度降低;升高偏压功率则会显著提升直流自我偏压。刻蚀压力与直流自我偏压呈正比例关系,HBr气体流量的变化及待刻蚀晶片的材质对直流自我偏压无显著影响。  相似文献   

5.
周钰杰  冯力群  孙军强 《中国激光》2012,39(9):906001-128
掺镁铌酸锂晶体(Mg:LiNbO3)是一种相对难刻蚀的晶体,Mg:LiNbO3的干法刻蚀速率和刻蚀形貌控制是铌酸锂光电子器件加工中的关键技术之一。采用牛津仪器公司的Plasmalab System 100以SF6/Ar为刻蚀气体,具体研究Mg:LiNbO3的刻蚀速率随着感应耦合等离子体(ICP)功率、反应离子刻蚀(RIE)功率、气室压强和气体流量配比等刻蚀参数的变化,同时研究发现SF6/(Ar+SF6)气体流量配比还会影响刻蚀表面的粗糙度。实验结果表明:在ICP功率为1000W,RIE功率为150W,标准状态(0℃,1个标准大气压)下气体总流量为52mL/min,压强为0.532Pa,SF6/(Ar+SF6)气体体积分数为0.077的条件下,刻蚀速率可达到152nm/min,刻蚀表面粗糙度为1.37nm,可获得刻蚀深度为2.5μm,侧壁角度为74.8°的表面平整脊形Mg:LiNbO3结构。  相似文献   

6.
用于垂直腔面发射激光器的GaAs/AlGaAs的ICP刻蚀工艺研究   总被引:1,自引:0,他引:1  
采用电感耦合等离子体(ICP)刻蚀设备对应用于垂直腔面发射激光器的GaAs/AlGaAs材料进行刻蚀工艺研究。该刻蚀实验采用光刻胶作为刻蚀掩模,Cl2/BCl3作为刻蚀工艺气体,通过实验分析总结了ICP源功率、射频偏压功率和腔体压强对GaAs/AlGaAs材料和掩模刻蚀速率的影响。利用扫描电子显微镜观察不同参数条件对样品侧壁垂直度和底部平坦度的影响。最终在保证高刻蚀速率的前提下,通过调整优化各工艺参数,得到了侧壁光滑、底部平坦的圆台结构。  相似文献   

7.
采用BCl3和Ar作为刻蚀气体对GaAs、AlAs、DBR反应离子刻蚀的速率进行了研究,通过控制反应的压强、功率、气体流量和气体组分达到对刻蚀速率的控制.实验结果表明:在同样条件下GaAs刻蚀的速率高于DBR和AlAs,在一定条件下GaAs刻蚀的刻蚀速率可达400nm/min,AlAs的刻蚀速率可达350nm/min,DBR的刻蚀速率可达340nm/min,刻蚀后能够具有光滑的形貌,同时能够形成陡直的侧墙,侧墙的角度可达85°.  相似文献   

8.
研究了以C4F8/SF6/O2为刻蚀气体,利用ICP刻蚀技术制作SOI脊形光波导过程中,刻蚀参数与侧壁粗糙度的关系.实验结果表明偏压、气体比例、压强是影响侧壁粗糙度的关键参数,在低偏压、低C4F8/SF6比和较高压强下更容易获得低粗糙度的侧壁.通过优化刻蚀参数,获得了侧壁粗糙度和传输损耗相对较低的SOI脊形波导  相似文献   

9.
研究了以C4F8/SF6/O2为刻蚀气体,利用ICP刻蚀技术制作SOI脊形光波导过程中,刻蚀参数与侧壁粗糙度的关系.实验结果表明偏压、气体比例、压强是影响侧壁粗糙度的关键参数,在低偏压、低C4F8/SF6比和较高压强下更容易获得低粗糙度的侧壁.通过优化刻蚀参数,获得了侧壁粗糙度和传输损耗相对较低的SOI脊形波导.  相似文献   

10.
应用感应耦合等离子体技术首次实现了对锑化铟薄膜的干法刻蚀。朗缪尔探针诊断结果表明 :射频电源功率为 2 0 0 W时 ,在刻蚀样品附近的等离子体离子密度最大达 6.71 70× 1 0 1 0 cm- 3。以 CCl F2 为刻蚀气体 ,进气流量 2 m L/min,RF功率 2 0 0 W,等离子体反应刻蚀运行气压 7.98Pa时 ,对 In Sb-In薄膜进行了感应耦合等离子体干法刻蚀 ,获得刻蚀图形 ,宽深比为 5  相似文献   

11.
干法刻铝中 ,BCl3添加 Cl2 、CHCl3和 N2 ,可改变 Al的刻蚀速率、Al对 Si O2 和胶的选择性、线宽和胶膜质量 ,其中 Cl2 流量影响最大。此外 ,本文还给出 RF功率和气压的影响。采用适当的气体组合、不太高的功率和不太低的气压 (BCl3∶ Cl2 ∶ CHCl3∶ N2 =70 sccm∶ 1 5 sccm∶ 1 0 sccm∶ 0~ 5 0 sccm,2 0 0 m Torr,2 0 0 W)可以实现细线条 (0 .6μm) Al的刻蚀。  相似文献   

12.
介绍了利用ICP设备,使用SF6基气体对4H-SiC衬底进行背面通孔刻蚀的技术。研究了金属刻蚀掩模、刻蚀气体中O2含量的变化、反应室压力、RF功率和ICP功率等各种条件对刻蚀结果产生的影响,重点对刻蚀气体中O2含量和反应室压力两个条件进行了优化。通过对刻蚀结果的分析,得出了适合当前实际工艺的优化条件,实现了厚度为100μm、直径为70μm的SiC衬底GaN HEMT和单片电路的背面通孔刻蚀,刻蚀速率达700nm/min,SiC和金属刻蚀选择比达到60∶1。通过对工艺条件的优化,刻蚀出倾角为75°~90°的通孔。  相似文献   

13.
聚酰亚胺微刻蚀加工工艺研究   总被引:1,自引:0,他引:1  
研究了RIE刻蚀聚酰亚胺的刻蚀速率、刻蚀表面粗糙度与不同加工工艺参数(包括射频功率、腔室压力、刻蚀气体成分等)之间的相互关系。刻蚀速率与射频功率、腔室压力都呈线性关系,与气体成分的关系是低SF6含量时呈线性,高SF6含量时出现饱和。刻蚀面的粗糙度几乎不受腔室压力的影响,而射频功率高于300 W和低SF6含量时粗糙度会急剧上升。采用腔室压力40 Pa、功率275 W、O2流量80 cm3/min、SF6流量20 cm3/min,通过RIE刻蚀获得了深度为39.5μm的微腔结构,为形成柔性基底空腔以及上悬结构等提供了技术基础。此外,对柔性基底固定技术进行了研究,提出了一种有效固定聚酰亚胺膜的新工艺方法。  相似文献   

14.
对使用CF4/Ar 混合气体刻蚀Al1.3Sb3Te的特性进行了研究。实验控制的参数是:气体流入刻蚀腔的速率,CF4/Ar 比例,O2的加入量,腔内压强以及加在底电极上的入射射频功率。总的气体流量是50sccm ,研究刻蚀速率与CF4/Ar的比例,O2加入量,腔内压强和入射射频功率的关系。最后刻蚀参数被优化。 使用优化的刻蚀参数CF4的浓度4%,功率300W,压强800mTorr,刻蚀速率达到70.8nm/min,刻蚀表面平整  相似文献   

15.
ICP刻蚀在微加速度传感器制作中的应用   总被引:1,自引:0,他引:1  
针对ICP刻蚀工艺进行了深入研究,探讨了气体流量、射频功率和工作室气压设定值等工艺参数对刻蚀效果的影响,最终在硅基底上获得了线宽为40μm时深刻蚀的最佳工艺参数,即采用BOSCH工艺,压力设定为6Pa,在刻蚀过程中通入流量为100cm3/min的SF6气体,持续11s,射频功率20W,源功率450W,保护过程中通入流量为75cm3/min的C4F8气体,持续10s,射频功率0W,源功率220W,得到了最佳刻蚀结果,并利用此工艺制作出了量程为±12g,灵敏度为79mV/g,精度高于±2%微机械加速度传感器。  相似文献   

16.
深入研究了GaP材料在高密度感应耦合等离子体刻蚀系统中刻蚀选择比和刻蚀速率随刻蚀系统的源功率、射频功率、腔室压强的变化规律,即通过改变其中一个参数而保持其它参数不变来得出变化规律;同时将刻蚀GaP材料应用到红光LED制作,即电流阻挡层和表面粗化这两种工艺中,通过大量试验,得到了刻蚀形貌和最优的刻蚀条件,制作阻挡层的最优条件为:BCl3流量比为3/1,ICP功率为600W,RF功率为100W,腔室压强为1.0×10-2Pa;表面粗化时只用BCl3气体刻蚀,表面粗化后LED的光强提高了30%。  相似文献   

17.
SF6/O2/CHF3混合气体对硅材料的反应离子刻蚀研究   总被引:1,自引:0,他引:1  
采用统计实验方法研究了利用SF6/O2/CHF3混合气体产生的等离子体进行硅的反应离子刻蚀技术.为了优化刻蚀条件,将刻蚀速率和选择比表示为SF6、O2、CHF3各自的流量以及气压和射频功率的函数.文中讨论了各种变量的变化对刻蚀速率和选择比的影响以及刻蚀机理,证实了加入CHF3可以显著地减小表面粗糙的结论.  相似文献   

18.
0.25 μm gate length AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors were exposed to inductively coupled plasma (ICP) N2 discharges at varied source power and rf chuck power. The plasma damage was characterized by evaluating device extrinsic transconductance and saturated drain–source current, as well as Schottky gate ideality factor and reverse breakdown voltage as a function of both ICP source power and rf chuck power. Auger and atomic force microscopy were also used to characterize the atomic ratio and roughness of plasma damaged surface, respectively. At a lower range of ICP source power (between 100 and 300 W) with a constant rf power of 10 W, the device performance was barely changed. But at higher ICP source power (greater than 400 W) and rf power (greater than 20 W), device characteristics including gate ideality factor, reverse breakdown voltage and saturated drain–source current were seriously degraded. In this plasma damage study, two device degradation mechanisms were identified. The first was ion bombardment induced lattice disorder that created generation–recombination centers and reduced the free carrier concentration. The second was preferential loss of As from GaAs surface and this also created deep level states, which gave rise to gate leakage current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号