首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of lactic acid (LA) on the polymer crystallization chain conformation and the surface modification of the electrospun nylon-6 fibers were examined. The effect of different amounts of LA on the polymer crystallization chain conformation of nylon-6 mat was evaluated using XRD, FT-IR and Raman spectroscopy whereas the surface modification of the electrospun mats was examined by FE-SEM, contact angle and mechanical properties measurement. It was found that the transition of meta-stable γ-form into the thermodynamically stable α-form was achieved by increasing the amounts of LA in the blend mixture. The adhesive property of LA was found to be responsible for the transformation from non-bonded to the point-bonded structure of nanofibers in the electrospun nylon-6 mat. The resultant LA/nylon-6 hybrid mat with improved hydrophilicity and mechanical properties may be a potential candidate for tissue scaffold.  相似文献   

2.
We study the stress–strain behaviors of the electrospun sPP single nanofibers as well as nonwoven mats, which were electrospun from sPP solutions using two different solvents (decalin and cyclohexane) by electrospinning. The effects of organic solvents were explored on the morphologies and the mechanical properties of the corresponding electrospun sPP single nanofibers and nonwoven mats. It was found that the nature of organic solvents dramatically affected the surface morphologies, the circular and looping deposition of the electrospun sPP fibers, and the mechanical properties. The tensile strength of both electrospun sPP single nanofibers and nonwoven mats prepared from decalin-base solution was stronger than that of cyclohexane-base solution.  相似文献   

3.
Novel DNA/Polyethyleneoxide (PEO) electrospun fibers were obtained from aqueous solution. Key solution properties related to electrospinning: conductivity, surface tension and viscosity were determined. The ionic conductivity of the solution increased significantly with the addition of DNA and only slightly with increasing amounts of PEO; the surface tension decreased with the addition of PEO; the viscosity increased with the addition of either DNA or PEO. It was found that solutions containing both DNA and PEO had ideal properties for electrospinning. The use of these solutions resulted in the formation of ultrafine fibrous mats with fiber diameters of 50–250 nm. It was also found that the average diameter of electrospun fibers decreased with decreased feed rate, increased tip-to-collector distance and increase in the potential employed during electrospinning.  相似文献   

4.
Electrospinning of Polyamide 6 (PA 6) in 2,2,2‐trifluoroethanol (TFE) was investigated for the fabrication of nanofibrous nonwoven membranes useful for separation systems. The effects of solution characteristics such as concentration and conductivity as well as the effects of processing conditions such as relative humidity and applied potential on the resultant nonwoven fibers were studied. By changing the relative humidity of the electrospinning chamber and the conductivity of the solvent, it is possible to modulate the fiber's size and consequently the porosity of the mats. The morphology of the electrospun PA 6 nanofibers was observed by scanning electron microscopy. The mechanical properties of the nanofibers were also studied. The results showed that PA 6 nanofibers having a diameter ranging from 100 to 600 nm, has been successfully prepared. The electrospun PA 6 nanofiber mats show good mechanical properties, such as a high‐tensile strength (12 ± 0.2 MPa) and elongation (300% ± 50%). The strength of the web was high enough to use as filter without the need of any supporting matrix and could be applicable in the field of self‐supporting membranes. The X‐ray and DSC analyses of the PA 6 electrospun fibers show the presence of the γ‐form of PA 6 crystallite that is usually obtained in the condition where a high stress of the fibers is applied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Electrospun nylon-6/chitosan (nylon-6/Ch) nanofibers were prepared by nanospider technology. Quaternary ammonium salts as antibacterial agent were immobilized onto electrospun nylon-6/Ch nanofibers via surface modification by soaking the mat in aqueous solution of glycidyltrimethylammonium chloride (GTMAC) at room temperature overnight to give nylon-6/N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (nylon-6/HTCC). The morphological, structural and thermal properties of the nylon-6/ch nanofibers were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). Biological screening has demonstrated the antibacterial activity of the electrospun nanofibers against Gram negative bacteria, Escherichia coli 35218, and Pseudomonas aeruginosa and Gram positive bacteria, Staphylococcus aureus 24213 among the tested microbes. Thus, the study ascertains the value of the use of electrospun nanofibers, which could be of considerable interest to the development of new antibacterial materials for biomedical applications.  相似文献   

6.
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as‐spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as‐spun nanofiber mats were investigated by scanning electron microscopy. The results showed that the morphologies of the electrospun products exhibited a zein‐dependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1–6 μm. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:380–385, 2007  相似文献   

7.
Nonwoven fibrous mats of poly(ethylene-co-vinyl alcohol) (EVOH) and thermoplastic starch (TPS) blends were successfully prepared through the electrospinning technique using a mixed solvent system of isopropyl alcohol and water. The influence of TPS on the morphology and structure of the fibrous mats was investigated using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The addition of TPS to EVOH resulted in beaded electrospun fibers. The SEM images revealed decreasing average width of the blend fibers and increasing quantity of beads with an increased TPS content. EVOH/TPS fibers mats irradiated under ultraviolet light using sodium benzoate as a photosensitizer were also prepared. The size and number of beads were diminished in the photocrosslinked EVOH/TPS fiber mats. The as-spun and crosslinked EVOH/TPS fiber mats exhibit a superior fluid uptake ability (with 20 wt% of TPS) and superior barrier properties (with 20 and 40 wt% of TPS) in comparison to those observed in neat electrospun EVOH mats. These properties are of particular interest for use in dressing materials for the medical industry and for use in multilayer plastic fuel tanks for the automotive industry, respectively. POLYM. ENG. SCI., 60:474–480, 2020. © 2019 Society of Plastics Engineers  相似文献   

8.
Electrospun mats of biodegradable polymer/clay nanocomposites were prepared in order to investigate the qualitative and quantitative correlations between electrospinning‐related parameters and the fibrous morphology of the mats. A full factorial design of experiments was used for that purpose and scanning electron microscopy was employed for dimensional characterization and determination of the chosen responses. Statistical analysis revealed that solution concentration and clay loading of nanocomposite were the most important parameters affecting the morphology of the fibrous webs. This, subsequently, allowed prediction of the domain of these two parameter settings where purely fibrous morphology can be achieved and further allowed optimization of the process in the framework of response surface methodology (RSM). The structure and thermal behaviour of the nanocomposites were also characterized before and after electrospinning using X‐ray diffraction, thermogravimetric analysis and differential scanning calorimetry. A multi‐analyte platform is provided by the combination of RSM results for improving the nanofibrous quality and post‐spinning characterization for predicting the overall performance of the electrospun web. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Studies on electrospun nylon-6/chitosan complex nanofiber interactions   总被引:1,自引:0,他引:1  
Composite membranes of nylon-6/chitosan nanofibers with different weight ratio of nylon-6 to chitosan were fabricated successfully using electrospinning. Morphologies of the nanofibers were investigated by scanning electron microscopy (SEM) and the intermolecular interactions of the nylon-6/chitosan complex were evaluated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) as well as mechanical testing. We found that morphology and diameter of the nanofibers were influenced by the concentration of the solution and weight ratio of the blending component materials. Furthermore FT-IR analyses on interactions between components demonstrated an IR band frequency shift that appeared to be dependent on the amount of chitosan in the complex. Observations from XRD and DSC suggested that a new fraction of γ phase crystals appeared and increased with the increasing content of chitosan in blends, this indicated that intermolecular interactions occurred between nylon-6 and chitosan. Results from performance data in mechanical showed that intermolecular interactions varied with varying chitosan content in the fibers. It was concluded that a new composite product was created and the stability of this system was attributed to strong new interactions such as hydrogen bond formation between the nylon-6 polymers and chitosan structures.  相似文献   

10.
Electrospinning is an interesting technique, which provides a facile and an effective mean in producing nonwoven fibrous materials; however, for producing nanofibers, investigation of the electrospinning conditions is very important. In this study, chitosan, gelatin, and their polyelectrolyte complexes (PECs) were electrospun to prepare nonwoven nanofibrous mats. The concentrations of chitosan and gelatin solutions and electric field (kV/cm) were optimized. The solutions were then blended in different ratios (0–100%) to get electrospun nanofibrous mats. Solution concentration and electric field showed pronounced effect on the electrospinnability and fiber diameter of these systems. Mostly large beads coexisted with the fibers were observed for chitosan at 1 wt% solution concentration, which then showed good electrospinnability at 2 wt% (nanofiber diameter was 145 and 122 nm at 15 and 20 kV/10 cm, respectively), whereas gelatin showed no electrospinnability below 15 wt% solution concentration and a homogenous fibers network at 15 wt% (149 nm at 20 kV/10 cm). The morphology and diameter of chitosan–gelatin PEC nanofibers varied with the chitosan/gelatin ratio. The crystallinity of chitosan was also observed to reduce with electrospinning and addition of gelatin. POLYM. ENG. SCI. 50:1887–1893, 2010. © 2010 Society of Plastics Engineers  相似文献   

11.
Biocompatible polyvinyl alcohol/polyethylene glycol and polyvinyl alcohol/polypropylene glycol copolymer mats were prepared by electrospinning. The composite fiber mats were subjected to detailed physical analysis complemented by scanning electron microscopy and Fourier transformations infrared spectroscopy. Scanning electron microscopy images showed that the morphology and diameters of the fibers were mainly affected by the types of polymers and their copolymer compositions. Microbial culture results showed that among the tested fibrous mats polyvinyl alcohol/50% polyethylene glycol gave the best results in preventing the cell attachment and proliferation. This novel electrospun matrix would be used as potential wound dressing material for skin regeneration.  相似文献   

12.
Coaxial electrospinning is a method for producing fibrous mats with optional features, such as antibacterial properties, controllable release, and hydrophobicity based on shell materials. Because these features are important in biomedical applications, in this study, biocompatible hydrophobic polymer (polycaprolactone) and hydrophilic polymer [poly(vinyl alcohol)] with silver nanoparticles loaded in the core solution were coaxially electrospun. The effect of silver addition on the conductivity and viscosity of the solutions, chemical structure of the fiber mats, mechanical properties, porosity, hydrophobicity, water vapor transmission rate (WVTR), silver release, and antibacterial properties were investigated. Fibers with silver exhibited less porosity and a lower WVTR and a greater contact angle than the fibers without silver. Furthermore, the core–shell fibers reduced the burst release of silver and successfully prevented the growth of Escherichia coli and Staphylococcus aureus bacteria. Therefore, it seems that these fibers are suitable for providing electrospun mats with long‐term antibacterial properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44979.  相似文献   

13.
Polyhydroxybutyrate (PHB) has been used in the biomedical field. However, the poor mechanical properties of PHB have limited its application. Here, electrospun fibrous nanocomposite mats reinforced with cellulose nanocrystals (CNCs) were fabricated by using PHB as polymeric matrix. The morphological, thermal, mechanical properties, as well as cytotoxicity were characterized. Increasing the concentration of CNCs caused a decrease in diameter of the electrospun fibers. Moreover, thermal analysis indicated that melting temperature of PHB/CNCs electrospun fibers were improved with the increased CNCs content. The addition of CNCs gradually enhanced the tensile strength till 8 wt % content followed by a gradual decrease at higher CNCs content (12–22 wt %) in tensile strength. The PHB/CNCs electrospun fibers were nontoxic to L‐929 and capable of supporting cell proliferation in all conditions. This study demonstrates that fibrous PHB/CNCs electrospun fibers are cytocompatible and potentially useful mechanical properties for biomedical application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43273.  相似文献   

14.
Nylon 6 nanofibers containing silver nanoparticles (nylon 6/silver) were successfully prepared by electrospinning. The structure and properties of the electrospun fibers were studied with the aid of scanning electron microscopy, transmission electron microscopy, energy‐dispersive spectroscopy, and X‐ray diffraction. The structural analysis indicated that the fibers electrospun at maximum conditions were straight and that silver nanoparticles were distributed in the fibers. Finally, the antibacterial activities of the nylon 6/silver nanofiber mats were investigated in a broth dilution test against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. It was revealed that nylon 6/silver possessed excellent antibacterial properties and an inhibitory effect on the growth of S. aureus and K. pneumoniae. On the contrary, nylon 6 fibers without silver nanoparticles did not show any such antibacterial activity. Therefore, electrospun nylon 6/silver nanocomposites could be used in water filters, wound dressings, or antiadhesion membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
New hybrid fibrous materials from polyacrylonitrile (PAN) and nanosized zinc oxide have been prepared by electrospinning or by combining electrospinning and electrospraying techniques. Electrospinning of PAN/nanosized zinc oxide dispersion leads to the production of mats with nanofiller distributed mainly in the bulk of the fibers. Electrospinning of PAN solution performed in conjunction with electrospraying of nanosized zinc oxide dispersion enables the preparation of fibers decorated with zinc oxide particles. The incorporation of zinc oxide in the fibers leads to enhancement of the mechanical properties of the mats. The fibrous materials having zinc oxide particles situated on the fibers surface exhibit better photocatalytic activity in respect to photo-induced degradation of the model dye methylene blue and greater antibacterial activity against the pathogenic microorganism Staphylococcus aureus.  相似文献   

16.
Poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) was electrospun into ultrafine fibrous nonwoven mats. Different from the conventional electrospinning process, which involves a positively charged conductive needle and a grounded fiber collector (i.e., positive voltage (PV) electrospinning), pseudo‐negative voltage (NV) electrospinning, which adopted a setup such that the needle was grounded and the fiber collector was positively charged, was investigated for making ultrafine PHBV fibers. For pseudo‐NV electrospinning, the effects of various electrospinning parameters on fiber morphology and diameter were assessed systematically. The average diameters of PHBV fibers electrospun via pseudo‐NVs were compared with those of PHBV fibers electrospun via PVs. With either PV electrospinning or pseudo‐NV electrospinning, the average diameters of electrospun fibers ranged between 500 nm and 4 μm, and they could be controlled by varying the electrospinning parameters. The scientific significance and technological implication of fiber formation by PV electrospinning and pseudo‐NV electrospinning in the field of tissue engineering were discussed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
采用静电纺丝技术制备了聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)/Econ“共混体系的超细纤维毡。通过扫描电镜(SEM)照片,分析了Ecoflex的加入对电纺纤维的平均直径和直径分布的影响。通过比较各体系的最低纺丝溶液浓度,发现PHBV在共混体系PHBV/Ecoflex中的含量越高,溶液的可纺性越好。对比研究了PHBV和PHBV/Ecoflex的溶液浇铸膜和电纺纤维毡的热性能,结果发现,出现在溶液浇铸膜DSC图谱中低温处的小熔融峰,在电纺纤维的DSC图谱中消失。  相似文献   

18.
In the present study, the morphology and mechanical properties of nylon‐6 nanofibers were investigated as a function of molecular weight (30,000, 50,000, and 63,000 g/mol) and electrospinning process conditions (solution concentration, voltage, tip‐to‐collector distance, and flow rate). Scanning electron micrographs (SEM) of nylon‐6 nanofibers showed that the diameter of the electrospun fiber increased with increasing molecular weight and solution concentration. An increase in molecular weight increases the density of chain entanglements (in solution) at the same polymer concentration; hence, the minimum concentration to produce nanofibers was lower for the highest molecular weight nylon‐6. The morphology of electrospun fibers also depended on tip‐to‐collector distance and applied voltage concentration of polymer solution as observed from the SEM images. Trends in fiber diameter and diameter distribution are discussed for each processing variable. Mechanical properties of electrospun nonwoven mats showed an increase in tensile strength and modulus as a function of increasing molecular weight. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Electrospinning technique was employed to prepare neat PVDF, nanoclay-PVDF and carbon nanotube (MWCNT)-PVDF nanocomposites, and nanoclay-carbon nanotube-PVDF hybrid nanocomposites. A mixture of dimethyl formamide/acetone (60/40) was used to fluidize the polymer and nanofillers. Electrospinning process was conducted under optimized conditions. Maximum modification was achieved at 0.15 wt% nanofiller. Rheological measurements on the prepared solutions revealed decreased material functions in the presence of nanoclay, whereas the rheological properties of MWCNT-PVDF solution did not show any significant reduction compared with those of neat PVDF solution. The behaviors of the hybrid nanocomposite solutions, though dependent on their composition and their material functions, increased with MWCNT concentration. These differences, together with variations in electrical properties of nanoclay and MWCNT, led to changes in morphology of the fiber during electrospinning process. Under electrospinning conditions designed for neat PVDF solution, mats with beads and with the highest fiber diameter were produced. Meanwhile, incorporation of both nanoclay and MWCNT into the solutions resulted in bead-free fibers with thinner diameter. Fourier transformed infrared spectrophotometry (FTIR) and X-ray diffractometry (XRD) were used to measure the β-phase crystalline content in electrospun mats. Complete agreement was found between the FTIR and XRD results. The lowest and highest β-phase contents were obtained for neat PVDF mat and hybrid nanocomposite mat containing 0.1 wt% clay, respectively. The mixing procedure of nanofillers and the PVDF solution was also found to be important. In case of hybrid nanocomposites, more β-crystals were formed when the nanoclay was first mixed in the absence of MWCNT.  相似文献   

20.
Over the past decade, electrospinning has grown from a small niche process to a widely used fiber formation technique. Applying a strong electric potential on a polymer solution or melt produces nanoscale fibers. These nanofibers form non‐woven textile mats, oriented fibrous bundles and even three‐dimensional structured scaffolds, all with large surface areas and high porosity. Major applications of electrospun membranes include tissue engineering, controlled drug delivery, sensing, separations, filtration, catalysis and nanowires. This perspective article highlights many recent advances in electrospun fibers for functional applications, with an emphasis on the advantages and proposed technologies for these non‐woven fibrous scaffolds. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号