首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of a melt-quenched crystalline-crystalline diblock copolymer, poly(ε-caprolactone)-block-polyethylene (PCL-b-PE), was studied by small-angle X-ray scattering and transmission electron microscopy. The melting behavior of PCL-b-PE was also investigated by differential scanning calorimetry. The melting temperature of PCL blocks, Tm,PCL, was ca. 55 °C and that of PE blocks was ca. 96 °C. Therefore, the PE block always crystallized first during quenching from the microphase-separated melt into various temperatures Tc below Tm,PCL to yield an alternating structure composed of PE lamellae and amorphous layers (PE lamellar morphology), and subsequently the crystallization of PCL blocks started at Tc after some induction period. The PE lamellar morphology was preserved after the crystallization of PCL blocks at low crystallization temperatures (Tc<30 °C), that is, the PCL block crystallized within the PE lamellar morphology. At high crystallization temperatures (45 °C>Tc>30 °C), on the other hand, the crystallization of PCL blocks destroyed the PE lamellar morphology to result in a new lamellar morphology mainly consisting of PCL lamellae and amorphous layers (PCL lamellar morphology). The PE crystals were fragmentarily dispersed in the PCL lamellar morphology.  相似文献   

2.
We have investigated the crystallized morphology formed at each temperature Tc (20 °C ≤ Tc ≤ 45 °C) in double crystalline poly(?-caprolactone)-block-polyethylene (PCL-b-PE) copolymers as a function of composition (or volume fraction of PE blocks ?PE) by employing small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) techniques. When PCL-b-PE with ?PE ≤ 0.58 was quenched from a microphase-separated melt into Tc, the crystallization of PE blocks occurred first to yield an alternating structure consisting of thin PE crystals and amorphous PE + PCL layers (PE lamellar morphology) followed by the crystallization of PCL blocks, where we can expect a competition between the stability of the PE lamellar morphology (depending on ?PE) and PCL crystallization (on Tc). Two different morphologies were formed in the system judging from a long period. That is, the PCL block crystallized within the existing PE lamellar morphology at lower Tc (<30 °C) to yield a double crystallized alternating structure while it crystallized by deforming or partially destroying the PE lamellar morphology at higher Tc (>35 °C) to result in a significant increase of the long period. However, the temperature at which the morphology changed was almost independent of ?PE. For PCL-b-PE with ?PE ≥ 0.73, on the other hand, the morphology after the crystallization of PE blocks was preserved at every Tc investigated.  相似文献   

3.
Tomoki Higa 《Polymer》2010,51(23):5576-5584
The crystal orientation of poly(?-caprolactone) (PCL) blocks in PCL-block-polyethylene (PE) copolymers has been investigated using two-dimensional small-angle X-ray scattering (2D-SAXS) and 2D wide-angle X-ray diffraction (2D-WAXD) as a function of crystallization temperature Tc and thickness of PCL layers dPCL. The PCL blocks were spatially confined in the solid lamellar morphology formed by the crystallization of PE blocks (PE lamellar morphology), an alternating structure of crystallized PE lamellae and amorphous PCL layers. This confinement is expected to be intermediate between hard confinement by glassy lamellar microdomains and soft confinement by rubbery ones, because the crystallized PE lamellae consist of hard PE crystals covered with amorphous (or soft) PE blocks. The 2D-SAXS results showed uniaxial orientation of the PE lamellar morphology after applying the rotational shear to the sample. Therefore, it was possible to investigate crystal orientation of PCL blocks within the oriented PE lamellar morphology. The 2D-WAXD results revealed that the c axis of PCL crystals (i.e., stem direction of PCL chains) was parallel to the lamellar surface normal irrespective of Tc when 16.5 nm ≥ dPCL ≥ 10.7 nm. However, it changed significantly with changing Tc when dPCL = 8.8 nm; the c axis was perpendicular to the lamellar surface normal at 45 °C ≥ Tc ≥ 25 °C while it was almost random at 20 °C ≥ Tc ≥ 0 °C. These results suggest that the PE lamellar morphology plays a similar role to glassy lamellar microdomains regarding spatial confinement against subsequent PCL crystallization.  相似文献   

4.
Bing Na  Ping Zhao  Rongni Du  Zhenqiang Yu 《Polymer》2005,46(14):5258-5267
Various lamellar orientations of high-density polyethylene (HDPE), due to competition between bulk nucleation and interfacial nucleation, have been realized in its melt drawn blends with isotactic polypropylene (iPP) upon cooling after subjected to 160 °C for 30 min. Directed crystallization, with heterogeneous nucleation in the bulk (within domains), is defined as lamellar growth along boundary of anisotropic domains and is favored in larger domains at higher temperature (slow cooling), since overgrowth of lamellae can feel the interface rather than impingement with neighbor ones as a result of scare nuclei at higher temperature. Moreover, lamellar growth caused by directed crystallization is dependent of dimension of confinement. Due to 2D confinement of cylindrical domains, lamellae can only grow along the axis of cylinder and thus b-axis orientation is formed. While in the layered domains with 1D confinement, however, lamellae grow with the normal of (110) plane along the melt drawn direction. On the other hand, epitaxial growth of HDPE chains onto iPP lamellae is related to the surface-induced crystallization and dominated by the interfacial nucleation. Only interfacial nucleation is preferred can epitaxial growth occur. Therefore, retarded crystallization, realized by either strong confinement in finer domains or rapid cooling or both, is favorable for it.  相似文献   

5.
Jie Wang 《Polymer》2009,50(20):4950-628
The crystallization detail of polyethylene (PE) has been scarcely studied via in-situ approach since it is an extremely fast process. In this work, optical microscopy is used to investigate crystallization details and characteristics of windmill-like polyethylene crystals. It has been shown that the straight edges of the petals appear firstly and grow in pairs from their central junctions, which subsequently induce the surrounding domains in between each pairs of petals to nucleate and crystallize into twisted lamellar overgrowths. The remaining terrace-stacked lamellae which form curved edges of the petals start to develop only after the straight edges of the petals together with the twisted lamellar overgrowths have completed their growth. It is confirmed that the preferential growth direction of these petals are along crystallographic [113] axis, which has an angle of 65° with the typical direction along b-axis adopted also by the twisted lamellar overgrowths. The crystallization kinetics is analyzed in terms of Avrami equation and an Avrami exponent n = 2 is thus obtained, which is consistent with the morphological observations of heterogeneous nucleation and 2-dimensional growth for these PE crystals. The melting behaviors of these crystals are exactly the reversed process of crystallization.  相似文献   

6.
Lu Sun  Lei Zhu  Benjamin S. Hsiao 《Polymer》2004,45(24):8181-8193
The self-assembly and crystallization behavior of a well-defined low molecular weight polyethylene-block-poly(ethylene oxide) (PE-b-PEO) diblock copolymer was studied. The number-average degrees of polymerization for the PE and PEO blocks were 29 and 20, respectively. The molecular weight distribution was 1.04 as determined by size-exclusion chromatography. The PE-b-PEO sample exhibited two melting points at 28.7 and 97.4 °C for the PEO and the PE crystals, respectively. The crystallization of the PE blocks was unconfined, while the crystallization of the PEO blocks was confined between pre-existing PE crystalline lamellae, as demonstrated by simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) studies. In the fully crystalline state, both PE and PEO blocks formed extended-chain crystals with PE chains tilted ∼22° from the lamellar normal and PEO chains parallel to the lamellar normal, as evidenced by two-dimensional WAXD study of shear-oriented samples. Regardless of hydrogen bonding among hydroxyl chain ends in the PEO blocks, interdigitated, single-crystalline layer morphology was observed for both PE and PEO crystals. The partial crystalline morphology, where the PE crystallizes and the PEO is amorphous, had the same overall d-spacing as the fully crystalline morphology. A double-amorphous PEO layer sandwiched between neighboring PE crystalline layers was deduced based on a chain conformation study using Fourier transform infrared. The confined crystallization kinetics for PEO blocks was investigated by differential scanning calorimetry, which could be explained by a heterogeneous nucleation mechanism. The slower crystallization rate in the PEO-block than the same molecular weight homopolymer was attributed to the effects of nanoconfinement and PEO chains tethered to the PE crystals.  相似文献   

7.
The effects of incorporated amorphous poly(dl-lactide) (PDLLA) on the isothermal crystallization and spherulite growth of crystalline poly(l-lactide) (PLLA) and the structure of the PLLA/PDLLA blends were investigated in the crystallization temperature (Tc) range of 90-150 °C. The differential scanning calorimetry results indicated that PLLA and PDLLA were phase-separated during crystallization. The small-angle X-ray scattering results revealed that for Tc of 130 °C, the long period associated with the lamellae stacks and the mean lamellar thickness values of pure PLLA and PLLA/PDLLA blend films did not depend on the PDLLA content. This finding is indicative of the fact that the coexisting PDLLA should have been excluded from the PLLA lamellae and inter-lamella regions during crystallization. The decrease in the spherulite growth rate and the increase in the disorder of spherulite morphology with an increase in PDLLA content strongly suggest that the presence of a very small amount of PDLLA chains in PLLA-rich phase disturbed the diffusion of PLLA chains to the growth sites of crystallites and the lamella orientation. However, the wide-angle X-ray scattering analysis indicated that the crystalline form of PLLA remained unvaried in the presence of PDLLA.  相似文献   

8.
The thin films of a symmetric crystalline-coil diblock copolymer of poly(l-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (TgPLLA), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (Tc), the glass transition temperature of PS (TgPS), the peak melting point of PLLA crystals (TmPLLA), and the end melting point of PLLA crystals (Tm,endPLLA). When annealed at (Tc=) 80 °C (Tc < TgPS < TODT, order-disorder transition temperature), 123 °C (TgPS < Tc < TmPLLA < TODT), 165 °C (TgPS < TmPLLA < Tc < Tm,endPLLA < TODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced. The PLLA crystallization between PS layers was hypothesized to account for the lamella reorientation during annealing. The crystallization, chain conformation, and possible chain folding mechanisms were discussed, based on detailed analysis of the lamellar structure before and after crystallization.  相似文献   

9.
Jianxiong Li  Qiang Wang  Jingshen Wu 《Polymer》2004,45(16):5719-5727
A high-density polyethylene (HDPE)/isotactic polypropylene (PP) (75/25) blend containing 25 wt% of PP was fibrillated by roller drawing at 138 °C. The fibrillated blend was processed again at temperatures ranging from 155 to 200 °C by compression molding or extrusion. The effects of molding temperature on the morphology and mechanical properties of the blend were investigated. Wide angle X-ray scattering (WAXS) and transmission electron microscopy (TEM) were used to study the morphology of the samples. The roller-drawn blend exhibited a fibrous structure with the chain direction aligned parallel to the drawing direction. After molding at 155 °C, the HDPE formed parallel-stacked lamellae retaining the parallel orientation after the melting of the PE crystals. As the molding temperature increased the parallel orientation gradually vanished and some of the parallel-stacked lamellae changed into twisted lamellae. The PP phase existed as fibrils in the PE matrix and the crystals stayed with their molecular chain aligned parallel to the fibrillation direction even when the molding temperature was far above the melting temperature of PP. Nevertheless, the orientation of the crystals did not change as the molding temperature increased from 155 to 165 °C. The internal structure of the PP fibrils changed from a needle structure to a parallel-stacked one. The PP fibrils induced the crystallization of the PE melt, leading to the formation of a trans-crystalline layer at their surface. As the molding temperature increased, more PE lamellae protruded into the PP fibrils and the interface between the PP fibrils and the PE matrix became diffuse.  相似文献   

10.
Bing Na 《Polymer》2005,46(3):819-825
Epitaxial growth of high-density polyethylene (HDPE) onto lamellae of isotactic polypropylene (iPP), with HDPE chains inclined about 50° to that of iPP, has been achieved for the first time in their blends via dynamic packing injection molding. Even more, the epitaxial growth was found to be dependent on composition of the blends. The sequence of crystallization is not the dominant factor, but the fact that iPP crystallizes before HDPE is prerequisite for epitaxial growth of PE. Various lamellar orientations with composition can be explained by the competition between bulk crystallization and epitaxy at interfaces (i.e. iPP lamellae). In 20PP (20 wt% iPP by weight in blends), HDPE can readily crystallize in the bulk as a result of shear, and no epitaxial growth of PE is observed. For 80PP, however, bulk crystallization of HDPE can be depressed due to lack of nuclei in its bulk, resulting from a much finer droplets dispersed in the iPP matrix, and then epitaxial growth prevails.  相似文献   

11.
Structural change in the crystallization process of polyoxymethylene (POM) cooled from the molten state has been investigated by the measurements of infrared spectra and small-angle (SAXS) and wide-angle X-ray scatterings (WAXS). When the melt was cooled slowly, the infrared bands characteristic of a folded chain crystal (FCC) were observed to appear around 156 °C. Below 140 °C, the infrared bands intrinsic of an extended chain crystal (ECC) were detected to increase in intensity. In the SAXS measurement, the peak (L1) corresponding to a stacked lamellar structure with the long period of ca. 14 nm was found to grow in parallel to the growth of infrared FCC bands. In the temperature region of the observation of infrared ECC bands, the new peak (L2) of long period of ca. 7 nm was found to appear and the intensity exchange occurred between the L1 and L2 peaks, that is, with decreasing temperature the L2 peak increased the intensity and its height became comparable to the L1 peak height. By combining all these experimental data, a model to illustrate the formation process of lamellar stacking structure has been presented. After the appearance of stacked lamellar structure of 14 nm long period from the melt, new lamellae are created in between the already existing lamellae and the long period changes to the half value, 7 nm. Some of molecular chain stems in a lamella are speculated to pass through the adjacent lamellae to form a bundle of fully extended taut tie chains, which are considered to be observed as the infrared bands characteristic of ECC morphology. Although the POM samples used in this experiment may contain small amount of low-molecular-weight macrocyclic component, it was not plausible judging from the various experimental data to assign the secondarily observed 7 nm SAXS peak to the repeating period originating from the stacked structure of macrocyclic compounds.  相似文献   

12.
Ian L. Hosier  J.S. Lin 《Polymer》2004,45(10):3441-3455
Four sets of propylene based random copolymers with co-units of ethylene, 1-butene, 1-hexene and 1-octene, and a total defect content up to ∼9 mol% (including co-unit and other defects), were studied after rapid and isothermal crystallization. Etched film surfaces and ultramicrotomed plaques were imaged so as to enhance contrast and minimize catalyst and co-catalyst residues. While increasing concentration of structural irregularities breaks down spherulitic habits, the formation of the gamma polymorph has a profound effect on the lamellar morphology. Lamellae grown in the radial axis of the spherulite and branches hereon are replaced in γ-rich copolymers with a dense array of short lamellae transverse or tilted to the main structural growth axis. This is the expected orientation for γ iPP branching from α seeds. Spherulites are formed in copolymers with non-crystallizable units (1-hexene and 1-octene) up to ∼3 mol% total defect content and were observed up to ∼6 mol% in those with partially crystallizable comonomers (ethylene and 1-butene). However, lamellae were observed in all the copolymers analyzed, even in the most defective ones, highlighting the important role of the gamma polymorph in propagating lamellar crystallites in poly(propylenes) with a high concentration of defects. Long periods measured from AFM and SAXS are comparatively analyzed.  相似文献   

13.
The crystallization behavior of poly(ε-caprolactone) (PCL) blocks starting from a solid lamellar morphology formed in advance by the crystallization of polyethylene (PE) blocks (PE lamellar morphology) in a PCL-b-PE diblock copolymer was investigated by differential scanning calorimetry (DSC), small-angle X-ray scattering with synchrotron radiation (SR-SAXS), and polarized optical microscope (POM). The crystallization behavior was quantitatively compared with that of a PCL-block-polybutadiene copolymer, where the crystallization of PCL blocks started from a rubbery lamellar microdomain. DSC and SR-SAXS results revealed that the crystallization rate of PCL blocks in PCL-b-PE increased drastically with decreasing crystallization temperature Tc and the Avrami exponent depended significantly on Tc. SR-SAXS curves during the crystallization of PCL blocks at high Tc showed a bimodal scattering character, that is, the peak position moved discontinuously with crystallization time. At low Tc, on the other hand, no shift of the SAXS peak position was observed. The macroscopic change in morphology was detected only at high Tc by POM observations. These experimental results for the crystallization behavior of PCL blocks in PCL-b-PE all support our previous conclusions obtained by static measurements; the crystallization mechanism at low Tc is completely different from that at high Tc, that is, the PCL blocks crystallize within the PE lamellar morphology at low Tc while the crystallization of PCL blocks at high Tc yields a morphological transition from the PE lamellar morphology into a new solid morphology.  相似文献   

14.
The development of crystalline lamellae in ultra-thin layers of poly(ethylene terephthalate) PET confined between polycarbonate (PC) layers in an alternating assembly is investigated as a function of layer thickness by means of X-ray diffraction methods. Isothermal crystallization from the glassy state is in-situ followed by means of small-angle X-ray diffraction. It is found that the reduced size of the PET layers influences the lamellar nanostructure and induces a preferential lamellar orientation. Two lamellar populations, flat-on and edge-on, are found to coexist in a wide range of crystallization temperatures (Tc = 117–150 °C) and within layer thicknesses down to 35 nm. Flat-on lamellae appear at a reduced crystallization rate with respect to bulk PET giving rise to crystals of similar dimensions separated by larger amorphous regions. In addition, a narrower distribution of lamellar orientations develops when the layer thickness is reduced or the crystallization temperature is raised. In case of edge-on lamellae, crystallization conditions also influence the development of lamellar orientation; however, the latter is little affected by the reduced size of the layers. Results suggest that flat-on lamellae arise as a consequence of spatial confinement and edge-on lamellae could be generated due to the interactions with the PC interface.  相似文献   

15.
《Polymer》2014,55(26):6960-6966
The crystallization behavior of poly(β-propiolactone)-block-polyethylene (PPL-b-PE) copolymers with high PE crystallinities χPE (>0.30) has been examined using time-resolved synchrotron small-angle X-ray scattering and Fourier transform infrared spectroscopy, where the PE block crystallized first and subsequently the PPL block crystallized on quenching from a strongly segregated melt. The crystallization of PE blocks destroyed the lamellar microdomain structure (LMS) existing in the melt to form the crystalline lamellar morphology (CLM), and then PPL blocks crystallized within CLM. This morphology formation was compared to our previous results for the crystallization of PPL-b-PE copolymers with low χPE (0.12 < χPE < 0.26), where the crystallizability of PE blocks was not sufficiently large to destroy LMS. As a result, PE blocks crystallized promptly within LMS to reinforce and stabilize it against the subsequent crystallization of PPL blocks, yielding the confined crystallization of both blocks within LMS. We summarize these results including the case of χPE = 0, and propose three mechanisms of morphology formation occurring in PPL-b-PE copolymers according to χPE (i.e., high, low, or zero).  相似文献   

16.
Deepak S. Langhe 《Polymer》2011,52(25):5879-5889
Layer multiplying coextrusion technique was used to fabricate films with hundreds of alternating layers of a crystallizable polymer, syndiotactic polypropylene (sPP), and an amorphous polymer, polycarbonate (PC). Atomic force microscopy and wide-angle X-ray scattering revealed the absence of any oriented crystal morphology of sPP in the extruded layered films. An approach of isothermal melt recrystallization of sPP nanolayers revealed the formation of oriented lamellae under the rigid confinement of hard glassy PC layers. X-ray scattering data showed that sPP crystallized as stacks of single crystal lamellae oriented parallel to the layers at high crystallization temperatures. As the crystallization temperature decreased, on-edge lamellar orientation was preferred. Formation of in-plane lamellae was attributed to heterogeneous bulk nucleation, while nucleation of on-edge lamellae was initiated at substrate interface. It was observed that as the layers thickness reduced, the orientations of both in-plane and on-edge lamellae became sharper.Detailed analysis of crystal orientations in 30 and 120 nm sPP layers was carried out. Melt recrystallization of 30 nm layers revealed formation of in-plane lamellae above 90 °C and mainly on-edge lamellae below 70 °C. At intermediate temperatures, formation of mixed crystals was reported. In 120 nm layers, crystallization temperature of 100 °C was required to form in-plane crystals, while on-edge lamellae were formed below 90 °C.We also investigated crystallization onset for on-edge and in-plane lamellar nucleation. Although, the two crystal fractions were significantly affected as a function of crystallization temperature, it was noticeable that both crystal habits were initiated at the same time. The results suggested that the relative growth rates of in-plane and on-edge crystal orientations was responsible for different fractions of the two crystal orientations at a given crystallization temperature.Oxygen transport properties of melt recrystallized sPP layers were measured. When the melt recrystallization temperature increased from 85 to 105 °C in 120 nm sPP layers, at least one order of magnitude enhancement in the barrier properties was observed. It was evident from the X-ray data that the amount of in-plane crystal fraction increased with increasing crystallization temperature. In-plane crystals acted as impermeable platelets to oxygen flux resulting in improved gas barrier properties. A similar effect was observed in 30 nm sPP layers over a temperature range of 60-105 °C. A correlation between in-plane crystal fraction and the oxygen permeability was obtained from X-ray and oxygen transport data analysis. It was shown that the permeability decreased exponentially with increasing in-plane crystal fraction.  相似文献   

17.
Ling Zhang  Tao Tao  Chunzhong Li 《Polymer》2009,50(15):3835-3840
Multi-walled carbon nanotubes (MWNTs) periodically decorated with polyethylene (PE) lamellar crystals had been prepared using the non-isothermal crystallization method. The morphology and structure of polyethylene attached to MWNTs were investigated by means of transmission electron microscopy (TEM). A nano-hybrid shish-kebab (NHSK) structure was observed wherein the average diameter of PE lamellar crystals varies from 30 to 150 nm with average periodicity of 35-80 nm. The TEM images of samples obtained at 125 °C showed that MWNTs were first wrapped by a homogeneous coating of PE with few subglobules, then PE chains epitaxially grew from the subglobule and formed lamellar crystals perpendicular to the carbon nanotube axis. It is suggested that the homogeneous coating plays a key role in the formation of NHSK structures. And the formation process was discussed based on the intermediate state images of samples obtained at 95 °C. While NHSK structures cannot be formed by using polypropylene (PP). This may attribute to the zigzagged conformation of PP chains on the surface of MWNTs, which hinders the formation of homogeneous coating of PP on it.  相似文献   

18.
Melt blends of short ultra-high molecular weight polyethylene (UHMWPE) fibers and isotactic polypropylene (iPP) were subjected to shear at 145 °C, above the melting point of polyethylene (PE). Structural evolution and final morphology were examined by in situ synchrotron X-ray scattering/diffraction as well as ex situ microbeam X-ray diffraction and high resolution scanning electron microscopy, respectively. Results indicate that the presence of oriented UHMWPE molten domains significantly facilitated the crystallization of iPP and enhanced the initial ‘shish-kebab’ structure leading to the final cylindritic morphology. It is argued that shear flow aligns the fibrillar UHMWPE domains, where the interfacial frictions between PE and iPP effectively retards the relaxation of iPP chains, allowing the aligned iPP chains to create a shish-like structure. Nucleation on the iPP shish initiates the folded chain lamellae (kebabs), which grow perpendicularly to the iPP/PE interface.  相似文献   

19.
Crystallization and melting of a poly(ethylene oxide) (PEO) diblock copolymer containing a tablet-like block of poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PMPCS) in ultrathin films have been studied using atomic force microscopy (AFM) coupled with a hot stage. The PEO and PMPCS block possess the number-average molecular weights (Mn) of 5300 and 2100 g/mol, respectively. The ultrathin films on the mica and glow-discharged carbon surfaces were obtained by static dilute solution casting at room temperature. Isothermal melt crystallization from ultrathin films always leads to flat-on lamellae. Selective area electron diffraction (SAED) experiments have demonstrated that the PEO blocks crystallize with a monoclinic structure identical to that of homo-PEO and the chain direction is perpendicular to the substrate. At Tc<44 °C, the monolayer crystals are dendrites. At Tc>48 °C, square-shaped crystals are formed with the (100) and (020) planes as the crystal edges. At 44 °C≤Tc≤48 °C, an intermediate monolayer morphology is observed. The monolayer thickness increases monotonically with increasing Tc. At the same Tc, the monolayer lamellae with the top and bottom amorphous layers contacting with the atmosphere and the substrate possess a significantly larger overall thickness than the long period of the crystals in bulk. For the spiral terraces induced by screw dislocation, the thickness of each terrace is close to that of the monolayer formed at the same Tc, and their melting is mainly determined by the terrace thickness.  相似文献   

20.
This study contains a combined application of three different techniques for the study of polyethy-lenes crystallized from the melt under different circumstances, small-angle X-ray diffraction (SAXD), low frequency Raman spectroscopy to examine the longitudinal acoustic (LA) mode, and electron microscopy. In particular, the combination of SAXD and Raman methods enables the separation of the situation where there is only one lamellar structure which displays several orders in the SAXD pattern, from that where there is more than one type of lamellar thickness present. The superior power of the Raman method, which does not depend on the regularity in the lamellar stacking, becomes apparent. The multiplicity of the lamellar population could be associated with lamellae formed isothermally at the preselected crystallization temperature and with lamellae which originated from material which has remained uncrystallized at this temperature and formed subsequently with smaller lamellar thickness during cooling of the sample. The existence of the corresponding double lamellar population could be made directly visible using electron microscopy on freeze-cut and stained sections. The thinner lamellae in the double population could be extracted by solvents, removing the corresponding SAXD and Raman peaks, and leaving blank image areas in place of the thin lamellae in the electron-micrographs. These extracted thinner lamellae correspond to lower molecular weights as assessed by g.p.c. Thus molecular segregation during crystallization is involved. Furthermore the segregated texture units and their arrangement within the full morphology could now be identified. Pronounced changes in lamellar thickness with crystallization time were observed throughout and were associated in the early stages of crystallization with molecular fractionation and in the later stages with thickening of lamellae already present. An unexpected interrelation between nucleation density and the final lamellar thickness through the agency of isothermal lamellar thickening has been established. Examples are quoted which are contrary to the expected trend of lamellar thickness with crystallization temperature, but which are interpretable nevertheless in the light of the effect of isothermal lamellar thickening. The potential significance of all these findings and of this kind of approach for the characterization of crystalline bulk polymers is made throughout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号