首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A series of amphiphilic poly(ethylene oxide)-b-poly(n-alkyl glycidyl carbamate)s-b-poly(ethylene oxide) triblock copolymers were synthesized by reaction between poly(ethylene oxide)-b-polyglycidol-b-poly(ethylene oxide) precursor copolymer and four n-alkyl isocyanates: ethyl, propyl, butyl and pentyl. After dissolution in water at room temperature the copolymers spontaneously form micelles. The critical micellization concentrations were determined by UV-VIS spectroscopy. The dimensions of the micelles, the aggregation numbers, and in some cases the micellar shape were determined by dynamic and static light scattering in a relatively broad temperature range. Special attention has been paid to the influence of the number of the carbon atoms in the alkyl chains, and respectively, the relative hydrophobicity of the middle block upon the self-association process. Clouding transition was observed for all of the copolymers, the clouding point being dependent upon the length of the alkyl chain.  相似文献   

2.
New ABC type terpolymers of poly(ethoxyethyl glycidyl ether)/poly(ethylene oxide)/poly(d,l-lactide) were obtained by multi-mode anionic polymerization. After successive deprotection of the ethoxyethyl groups from the first block, highly hydroxyl functionalized copolymers of polyglycidol/poly(ethylene oxide)/poly(d,l-lactide) were obtained. These copolymers form elongated ellipsoidal micelles by direct dissolution in water. The micelles consist of a poly(d,l-lactide) core and stabilizing shell of polyglycidol/poly(ethylene oxide). The hydroxyl groups of polyglycidol blocks situated at the micelle surface provide high functionality, which could be engaged in further chemical modification resulting in a potential drug targeting agents. The micellization process of the copolymers in aqueous media was studied by hydrophobic dye solubilization, static and dynamic light scattering, and transmission electron microscopy.  相似文献   

3.
Amphiphilic thermally sensitive poly(N‐isopropylacrylamide)‐block‐poly(tetramethylene carbonate) block copolymers were synthesized by ring‐opening polymerization of tetramethylene carbonate with hydroxyl‐terminated poly(N‐isopropylacrylamide) (PNiPAAm) as macro‐initiator in the presence of stannous octoate as catalyst. The synthesis involved PNiPAAm bearing a single terminal hydroxyl group prepared by telomerization using 2‐hydroxyethanethiol as a chain‐transfer agent. The copolymers were characterized using 1H NMR and Fourier transform infrared spectroscopy and gel permeation chromatography. Their solutions show reversible changes in optical properties: transparent below the lower critical solution temperature (LCST) and opaque above the LCST. The LCST depends on the polymer composition and the media. Owing to their amphiphilic characteristics, the block copolymers form micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range 1.11–22.9 mg L?1. Increasing the hydrophobic segment length or decreasing the hydrophilic segment length in the amphiphilic diblock copolymers produces lower CMCs. A core‐shell structure of the micelles is evident from 1H NMR analyses of the micelles in D2O. Transmission electron microscopic analyses of micelle morphology show a spherical structure of both blank and drug‐loaded micelles. The blank and drug‐loaded micelles have an average size of less than 130 nm. Observations show high drug‐entrapment efficiency and drug‐loading content for the drug‐loaded micelles. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
Qiao Jin 《Polymer》2010,51(14):3068-4643
Phenylboronic acid-containing thermo-responsive block copolymer, poly(ethylene oxide)-b-poly(methoxydi(ethylene glycol) methacrylate-co- aminophenylboronic acid ethyl methacrylate) (PEO-b-P(DEGMMA-co-PBAMA)), was employed to investigate the multiple micellization and dissociation transitions. The unique sugar- and pH-responsive properties of phenylboronic acid were interesting to provide two parallel approaches to tune the critical micellization temperature (CMT) and multiple micellization of thermo-responsive block copolymer. The block copolymers were molecularly soluble below 21 °C and underwent micellization above 21 °C at pH 8.7. After glucose was added at 24 °C, hydrophobic phenylboronic acid was changed to hydrophilic boronate-glucose complex and the CMT of the thermo-sensitive block was increased which caused the dissociation of micelles. In parallel, if the solution pH was increased from 8.7 to 11 at 25 °C, micelles were disrupted because of the formation of hydrophilic phenylboronate anion, which elevated the CMT of the thermo-sensitive block polymer. The introduction of phenylboronic acid groups into the thermo-responsive block copolymers provides a novel approach to tune the multiple micellization and dissociation transitions that might have great potentials in biomedical applications.  相似文献   

5.
The current study synthesized amphiphilic thermal/pH-sensitive block copolymers PNiPAAm-b-PHpr by condensation polymerization of trans-4-hydroxy-l-proline (Hpr) initiated from hydroxy-terminated poly(N-isopropylacrylamide) (PNiPAAm) as the macroinitiator in the presence of the catalyst, SnOct2. 1H NMR, FTIR, and gel permeation chromatography (GPC) characterized these copolymers. Their solutions showed reversible changes in optical properties: transparent below a lower critical solution temperature (LCST) and opaque above the LCST. The LCST values depended on the polymer composition and the media. With critical micelle concentrations (CMCs) in the range of 1.23-3.73 mg L−1, the block copolymers formed micelles in the aqueous phase owing to their amphiphilic characteristics. Increased hydrophobic segment length or decreased hydrophilic segment length in an amphiphilic diblock copolymer produced lower CMC values. The current work proved the core-shell structure of micelles by 1H NMR analyses of the micelles in D2O. Transmission electron microscopy analyzed micelle morphology, showing a spherical core-shell structure. The micelles had an average size in the range of 170˜210 nm (blank), and 195˜280 nm (with drug). Observations showed high drug entrapment efficiency and drug-loading content for the drug micelles.  相似文献   

6.
Dually responsive amphiphilic diblock copolymers consisting of hydrophilic poly(N‐isopropyl acrylamide) [poly(NIPAAm)] and hydrophobic poly(9‐anthracene methyl methacrylate) were synthesized by reversible addition fragmentation chain‐transfer (RAFT) polymerization with 3‐(benzyl sulfanyl thiocarbonyl sulfanyl) propionic acid as a chain‐transfer agent. In the first step, the poly(NIPAAm) chain was grown to make a macro‐RAFT agent, and in the second step, the chain was extended by hydrophobic 9‐anthryl methyl methacrylate to yield amphiphilic poly(N‐isopropyl acrylamide‐b‐9‐anthracene methyl methacrylate) block copolymers. The formation of copolymers with three different hydrophobic block lengths and a fixed hydrophilic block was confirmed from their molecular weights. The self‐assembly of these copolymers was studied through the determination of the lower critical solution temperature and critical micelle concentration of the copolymers in aqueous solution. The self‐assembled block copolymers displayed vesicular morphology in the case of the small hydrophobic chain, but the morphology gradually turned into a micellar type when the hydrophobic chain length was increased. The variations in the length and chemical composition of the blocks allowed the tuning of the block copolymer responsiveness toward both the pH and temperature. The resulting self‐assembled structures underwent thermally induced and pH‐induced morphological transitions from vesicles to micelles and vice versa in aqueous solution. These dually responsive amphiphilic diblock copolymers have potential applications in the encapsulation of both hydrophobic and hydrophilic drug molecules, as evidenced from the dye encapsulation studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46474.  相似文献   

7.
BACKGROUND: Y‐shaped block copolymers are a type of special star polymer that have received considerable attention due to their unique morphologies and phase behavior. This research is based on the preparation of novel Y‐shaped block copolymers using enzymatic ring‐opening polymerization (eROP) and atom‐transfer radical polymerization (ATRP), followed by an investigation of their micellization properties. RESULTS: Y‐shaped block copolymers consisting of polycaprolactone and poly(glycidyl methacrylate) were synthesized successfully by the combination of eROP and ATRP. NMR, gel permeation chromatography (GPC), Fourier transform infrared and atomic force microscopy analyses confirmed the compositions of the block copolymers. The dispersity obtained from GPC was less than 1.4, which indicated a control of the polymerization. The self‐assembly behavior of the Y‐shaped block copolymers was investigated in aqueous media. Aggregates of various morphologies (such as spherical micelles, lamellae, worm‐like micelles and large compound micelles) were observed. In addition, it was found that both the copolymer composition and concentration in tetrahydrofuran greatly influenced the morphologies of the aggregates. CONCLUSION: The results suggest that the Y‐shaped diblock copolymers can be synthesized by simple methods. They have various morphologies, including normal spherical micelles, lamellae, worm‐like micelles and large compound micelles. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
A new amphiphilic 4-arm star-shaped poly(D,L-lactide)/poly(ethyl ethylene phosphate) (ssPLA-b-PEEP) block copolymer was synthesized by ring-opening polymerization of ethyl ethylene phosphate (EEP) with hydroxyl terminated 4-arm star-shaped poly(D,L-lactide) (ssPLA) as a macroinitiator, which was prepared by ring-opening polymerization of D,L-lactide (LA) initiated by pentaerythrite using stannous octoate as catalyst. The structures of the block copolymers were confirmed by IR, 1H-NMR and GPC analysis. Fluorescence measurements were applied to determine the critical micelle concentration (CMC) of the copolymer micelle solutions. The diameter and the distribution of micelles were characterized by dynamic light scattering (DLS) and the shape was perceived by transmission electron microscopy (TEM). The results indicated those copolymers formed nano-micelles in aqueous solution with hydrophobic poly(D,L-lactide) core and hydrophilic poly(ethyl ethylene phosphate) shell. The CMC of the copolymer solutions increased with the increments of the proportion of PEEP segments. TEM images demonstrated that all micelles were spherical.  相似文献   

9.
Zhiqiang Jiang  Yujing You  Xianmo Deng 《Polymer》2007,48(16):4786-4792
Thermogelling triblock copolymers of poly(?-caprolactone-co-glycolide)-poly(ethylene glycol)-poly(?-caprolactone-co-glycolide) [P(CL-GA)-PEG-P(CL-GA)] were successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. The aqueous solutions of the copolymers underwent sol-gel transition as the temperature was increased from 20 to 60 °C. The amphiphilic copolymer formed micelles in water and a gel was formed by aggregation of micelles. The structure parameters played a critical role in determining sol-gel transition behavior. Either increasing [GA]/[CL] ratio or decreasing P(CL-GA) block length could induce the increase of the lower sol-gel transition temperature. Glycolide (GA) was incorporated into the polymer chain to increase the polymer degradation rate. Sustained release of rifampicin for approximately 32 days was obtained from the gel. It is believed to have potential applications in drug delivery and tissue engineering.  相似文献   

10.
In this article, we describe the synthesis and solution properties of PEG‐b‐PTMC star block copolymers via ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) monomer initiated at the hydroxyl end group of the core PEG using HCl Et2O as a monomer activator. The ROP of TMC was performed to synthesize PEG‐b‐PTMC star block copolymers with one, two, four, and eight arms. The PEG‐b‐PTMC star block copolymers with same ratio of between hydrophobic PTMC and hydrophilic PEG segments were obtained in quantitative yield and exhibited monomodal GPC curves. The amphiphilic PEG‐b‐PTMC star block copolymers formed spherical micelles with a core–shell structure in an aqueous phase. The mean hydrodynamic diameters of the micelles increased from 17 to 194 nm with increasing arm number. As arm number increased, the critical micelle concentration (CMC) of the PEG‐b‐PTMC star block copolymers increased from 3.1 × 10?3 to 21.1 × 10?3 mg/mL but the partition equilibrium constant, which is an indicator of the hydrophobicity of the micelles of the PEG‐b‐PTMC star block copolymers in aqueous media, decreased from 4.44 × 104 to 1.34 × 104. In conclusion, we confirmed that the PEG‐b‐PTMC star block copolymers form micelles and, hence, may be potential hydrophobic drug delivery vehicles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Vural Bütün 《Polymer》2003,44(24):7321-7334
2-(dimethylamino)ethyl methacrylate (DMA) was block copolymerized in turn with three other tertiary amine methacrylate comonomers, namely 2-(diethylamino)ethyl methacrylate (DEA), 2-(diisopropylamino)ethyl methacrylate (DPA) and 2-(N-morpholino)ethyl methacrylate (MEMA), using group transfer polymerization (GTP). The DMA residues of each of these diblock copolymers were selectively betainized using 1,3-propane sultone under mild conditions to yield a series of novel betaine diblock copolymers. These selectively betainized copolymers could be dissolved molecularly without co-solvents in aqueous media at room temperature, with micellization occurring reversibly on judicious adjustment of the solution pH, temperature or electrolyte concentration. In all three cases, stable block copolymer micelles were formed with betainized-DMA coronas and hydrodynamic diameters of 10-46 nm. The selective betainization of the DMA residues dramatically reduces the surface activity and increase the solubility of the tertiary amine methacrylate block copolymers (DMA-DEA, DMA-DPA and DMA-MEMA).  相似文献   

12.
The micellization of ionic amphiphilic diblock copolymers, polyisobutylene-block-poly(methacrylic acid) (PIB-b-PMAA), with a constant degree of polymerization of the non-ionic block and various degrees of polymerization of the polyelectrolyte block was examined in aqueous media by means of fluorescence spectroscopy using pyrene as a polarity probe. The molar values of the critical micellization concentration (cmc) were found to be around 2×10−6 mol/l, being nearly independent of the length of the polyelectrolyte block as well as pH (in the range 6-9) and ionic strength (≤0.5 M NaCl) while the specific cmc values varied from 20 to 100 mg/l. Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments provided evidence that aggregation numbers and hydrodynamic radii of the formed copolymer micelles are sensitive to variations of pH and ionic strength, indicating that these micelles might be ‘dynamic’ rather than ‘frozen’ ones. It was also shown by means of a combination of turbidimetry, analytical ultracentrifugation, fluorescence spectroscopy, SANS, and DLS that the formed copolymer micelles mixed with a strong cationic polyelectrolyte, poly(N-ethyl-4-vinylpyridinium bromide) at charge ratio Z=[+]/[−] not exceeding a certain critical value ZM<1, generate peculiar water-soluble micellar complex onion-like species, each containing a two-phase hydrophobic nucleus and a hydrophilic corona. The nucleus consists of a PIB core and a shell assembled from the fragments of water-insoluble interpolyelectrolyte complex. The corona is formed by the excess fragments of poly(sodium methacrylate) blocks not involved in complexation with poly(N-ethyl-4-vinylpyridinium bromide).  相似文献   

13.
X.Y. Xiong  L.H. Gan 《Polymer》2005,46(6):1841-1850
Poly(lactic acid) (PLA) was successfully grafted to both ends of Pluronic F87 block copolymer (PEO-PPO-PEO) to obtain amphiphilic P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers (PLA-F87-PLA) with short PLA blocks. The block composition and structure of PLA-F87-PLA block copolymers were studied by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetric (DSC) and wide angle X-ray diffraction (WXRD) techniques. The aggregation behavior of PLA-F87-PLA block copolymers in aqueous solutions was studied using the laser light scattering (LLS) technique. Various types of particles consisting of small micelles, medium and large aggregates were observed due to the complex structure of these copolymers. Importantly, PLA-F87-PLA block copolymers retain the thermal responsive behavior found in Pluronic systems. The critical micellization temperatures (CMTs) of PLA-F87-PLA were lower than that of F87 because of increased hydrophobicity introduced by the PLA blocks. A reversible sol-gel transition was observed for the hydrogels formed from PLA6-F87-PLA6 and PLA9-F87-PLA9 block copolymers. Preliminary results from the drug release study using a hydrophilic model drug procain hydrochloride (PrHy) were promising. Constant initial release rate was observed.  相似文献   

14.
The electrostatic self-assembly of thermally responsive copolymers of N-isopropylacrylamide (NIPAM) containing up to 10 mol% of the sulfobetaine monomer 3-[N-(3-methacrylamidopropyl)-N,N-dimethyl]ammoniopropane sulfonate) (SPP) and poly(ethylene oxide) modified with terminal cationic or anionic groups (IMPEO) was studied in methanol and aqueous solutions by static light scattering, turbidimetry, viscometry, and rheological measurements. The formation of graft-like complexes at stoichiometric dipole-ion ratio and their self-association was detected in the dilute and semidilute regime at temperatures below and above the lower critical solution temperature (LCST). The ability of the graft-like complexes to associate below the LCST depended on the sulfobetaine content of the copolymers, the functionality of IMPEO, and the polymer concentration. The effect of the IMPEO terminal group on the solution behavior of the graft-like complexes was less pronounced. With increasing temperature their semidilute aqueous solutions form gels, stable over a wide temperature range.  相似文献   

15.
A family of amphiphilic ABCBA pentablock copolymers based on commercially available Pluronic® F127 block copolymers and various amine containing methacrylate monomers was synthesized via Cu(I) mediated controlled radical polymerization. The block architecture and chemical composition of the pentablock copolymers were engineered to exhibit both temperature and pH responsive self-assembly by exploiting the lower critical solution temperature of the poly(ethylene oxide)/poly(propylene oxide) blocks and the polycationic property of the poly(amine methacrylate) blocks, respectively. In aqueous solutions, the pentablock copolymers formed temperature and pH-responsive micelles. Concentrated aqueous solutions of the copolymer formed a pH-responsive, thermoreversible gel phase. The controlled radical synthesis route yielded well-defined copolymers with narrow molecular weight distributions with the benefit of mild reaction conditions. Small angle X-ray scattering, laser light scattering, cryogenic transmission electron microscopy and dynamic mechanical analysis have been used to characterize the self-assembled structures of the micellar solution and gel phases of the aqueous copolymer system. These copolymers have potential applications in controlled drug delivery and non-viral gene therapy due to their tunable phase behavior and biocompatibility.  相似文献   

16.
Thermo-sensitive nanosized structures have been prepared in water from poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether) (PMVE-b-PIBVE) block copolymers. The composition and the architecture (diblock and triblock architectures) of the PMVE-b-PIBVE copolymers have been varied. The investigated copolymers had an asymmetric composition with a major PMVE block. While the PIBVE blocks are hydrophobic, the PMVE blocks are hydrophilic at room temperature and become hydrophobic above their demixing temperature (around 36 °C) as a result of the lower critical solution temperature (LCST) behavior. At room temperature, the amphiphilic copolymers aggregate in water above a critical micelle concentration, which has been experimentally measured by hydrophobic dye solubilization. The hydrodynamic diameter of the structures formed above the cmc has been measured by dynamic light scattering (DLS) while their morphology has been studied by transmission electron microscopy (TEM). 1H NMR measurements in D2O at room temperature reveal that the aggregates contain PIBVE insoluble regions surrounded by solvated PMVE chains. These investigations have shown that polydisperse spherical micelles are formed for asymmetric PMVE-b-PIBVE copolymers containing at least 9 IBVE units. For copolymers containing less IBVE units, loose aggregates are formed.Finally, the thermo-responsive, reversible properties of these structures have been investigated. Above the cloud point of the copolymers, the loose aggregates precipitate while the micelles form large spherical structures.  相似文献   

17.
以I2 作为探针 ,用可见光度方法测定不同浓度比例的P94/L92和F10 8/L92二元Pluronic嵌段共聚物水溶液的临界胶束浓度。实验结果表明 ,这些PPO嵌段长度相近的分子在全部浓度比例范围内都发生相互作用 ,生成了混合胶束。由于这些分子的PEO嵌段长度不等 ,随着具有较短PEO嵌段的L92分子加入 ,P94/L92和F10 8/L92混合胶束外壳的EO基团数减少 ,从而使混合胶束水化度降低  相似文献   

18.
Ying Qian Hu  Bong Sup Kim 《Polymer》2007,48(12):3437-3443
The polymerization of 2-(diisopropylamino)ethyl methacrylate (DPA) by RAFT mechanism in the presence of 4-cyanopentanoic acid dithiobenzoate in 1,4-dioxane was studied. The DPA homopolymer was employed as a macro chain transfer agent to synthesize pH-sensitive amphiphilic block copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the hydrophilic block. 1H NMR and GPC measurements confirmed the successful synthesis of these copolymers. Potentiometric titrations and fluorescence experiments proved that the copolymers underwent a sharp transition from unimers to micelles at a pH of ∼6.7 in phosphate buffered saline solutions. It was found that the hydrophilic/hydrophobic balance of these block copolymers had no apparent effect on their pH-induced micellization behaviors. The DLS investigation revealed that the micelles have a mean hydrodynamic diameter below 60 nm with a narrow size distribution.  相似文献   

19.
Summary The polymerization of ε–caprolactone (CL) in the presence of HCl·Et2O via activated monomer mechanism was performed to synthesize diblock copolymers composed of methoxy polyethyleneglycol (MPEG) and poly(ε–caprolactone) (PCL). The obtained PCLs had molecular weights close to the theoretical values calculated from the CL to MPEG molar ratios and exibited monomodal GPC curves. We successfully prepared MPEG and PCL diblock copolymers by activated monomer mechanism. The micellar characterization of MPEG-PCL diblock copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering, AFM and fluorescence techniques. The diblock copolymers formed micelles with a critical micelle concentration (CMC) ranging 2.07×10-2–1.16×10-3 mg/mL depended on the block lengths of diblock copolymers. The diameters of micelles, measured by dynamic light scattering, were 100–250 nm. Most micelles exhibited a spherical shape in AFM.  相似文献   

20.
Jing Cheng  Yu-Cai Wang 《Polymer》2008,49(22):4784-4790
A series of novel 4-arm biodegradable star block copolymers of poly(?-caprolactone) and poly(ethyl ethylene phosphate) were synthesized via ring-opening polymerization of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane using hydroxyl terminated 4-arm star-shaped poly(?-caprolactone) and stannous octoate co-initiation system. Gel permeation chromatography (GPC), NMR and FT-IR were used to demonstrate the structure and analyze their compositions. The self-assembly behavior of these star-shaped copolymers in aqueous solution was studied by 1H NMR and fluorescence technique, and the results indicated those copolymers formed nanoparticles in aqueous solution with hydrophobic poly(?-caprolactone) core and hydrophilic poly(ethyl ethylene phosphate) shell. The critical micelle concentration was relative to the length of poly(?-caprolactone) and poly(ethyl ethylene phosphate) block. Paclitaxel was encapsulated in the micelles and the release behavior demonstrated that a longer hydrophobic block resulted in slightly slower release rate from the micelles. These copolymer micelles were biocompatible and potential as drug-delivery vehicles for pharmaceutical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号