首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve the mechanical characteristics of silicone polymer, silica particulate filler can be dispersed in the continuous phase. During the dispersion process, silicone is adsorbed on the particle surfaces, and at the same time, the particles are submitted to breakage and erosion phenomena, modifying therefore their particle size distribution (PSD). A numerical tool, that can simulate the evolution of the silica PSD in polydimethylsiloxane (PDMS) during dispersion, and allows an a priori knowledge of the evolution of the suspension properties, is developed. The comparison between experimental and calculated PSD as well as process viscosity values is presented.The advantage of such a modelization lies in the prediction of the final product properties, or in the design and optimization of a process for obtaining a desired product. This approach also shows the effect of the particle porosity on the product characteristics evolution during the dispersion process. The influence of parameters such as the filler quantity, the stirring speed or the number of silanols sites on the silica surface is also investigated.  相似文献   

2.
A novel phenolic rigid organic filler (KT) was melt-mixed with an isotactic polypropylene (iPP) to prepare a series of PP/KT composites, with or without maleic anhydride grafted polypropylene (MAPP) as compatilizer. The evolution of filler morphology during melt-mixing and melt-pressure processes was monitored by scanning electron microscope (SEM) and polarized optical microscope (POM). The influences of shear force, pressure time, filler content and MAPP concentration on the final filler dispersion were studied. We found that this rigid organic filler readily melted and dispersed homogenously into the iPP matrix through a fission-fusion process during the melt-mixing process. Thus a balanced dispersion, which was closely related to shear force and MAPP concentration, can be achieved. During the meltpressure process, parts of the filler particles combined gradually through a coalescence process. However, the incorporation of MAPP can effectively inhibit the tendency to coalesce and refine the filler particles sizes into nanoscale. Thus, a series of PP/KT composites with controllable filler particles size and narrow size distribution can be obtained just by adjusting process conditions and MAPP concentration. In addition, due to the in-situ formation mechanism, the filler phase possessed a typical solid true-spherical shape.  相似文献   

3.
Wetting is the first step in the dispersion process of any powder. Understanding how the powder surface and the liquid properties affect the speed and intensity of the wetting process provides a set of tools to determine the dispersion efficiency as a whole, and an effective dispersion allows the reduced use of the powder to achieve the specified final properties. This article reports experimental results on the wetting behavior of five different TiO2 samples by liquids with different values of surface tension [deionized (DI) water and DI water containing surfactants] and its effect on the dispersion process. The selection of the TiO2 samples was based on different particles sizes with similar surface properties, and similar sizes with different surface properties. The samples were characterized in terms of their specific surface area and particle size distribution. The wetting behavior was evaluated by a capillary rise technique (Washburn) to measure liquid penetration height and rate, and the time evolution of the particle size distribution. The results show that larger particles presented faster wettability and that liquids with lower surface tension facilitate the wetting of the powder. The energy required to deagglomerate the powder is inversely proportional to the wetting speed: the faster the wetting the easier it will be to disperse the particles, with less energy required.  相似文献   

4.
A novel phenolic rigid organic filler (KT) was melt-mixed with an isotactic polypropylene (iPP) to prepare a series of PP/KT composites, with or without maleic anhydride grafted polypropylene (MAPP) as compatilizer. The evolution of filler morphology during melt-mixing and melt-pressure processes was monitored by scanning electron microscope (SEM) and polarized optical microscope (POM). The influences of shear force, pressure time, filler content and MAPP concentration on the final filler dispersion were studied. We found that this rigid organic filler readily melted and dispersed homogenously into the iPP matrix through a fission-fusion process during the melt-mixing process. Thus a balanced dispersion, which was closely related to shear force and MAPP concentration, can be achieved. During the melt-pressure process, parts of the filler particles combined gradually through a coalescence process. However, the incorporation of MAPP can effectively inhibit the tendency to coalesce and refine the filler particles sizes into nanoscale. Thus, a series of PP/KT composites with controllable filler particles size and narrow size distribution can be obtained just by adjusting process conditions and MAPP concentration. In addition, due to the in-situ formation mechanism, the filler phase possessed a typical solid true-spherical shape.  相似文献   

5.
New data on the liquid residence time distribution for two-phase downflow of air-Newtonian and non-Newtonian liquids through packed beds of porous and non-porous particles are presented. The piston-dispersion-exchange model is used to describe the liquid flow. With porous particles the dynamic evolution of the tracer concentration in the particles is described in terms of diffusion phenomena. The axial dispersion is very important in the case of two-phase downflow of air-water (trickle flow regime) and air-CMC systems through fixed beds with porous particles, and is negligible in the case of non-porous particles. With the porous particles, a key value is the effective diffusion coefficient of the tracer in the pores of the particles.  相似文献   

6.
《Ceramics International》2017,43(15):11642-11647
For efficient development of high-performance composite electrodes for solid oxide fuel cells (SOFCs), it is crucial to precisely tailor the microstructural features of the electrodes, such as their grain size, phase connectivity, and pore structure. Herein, we report the effects of the mixing state of component powders of a composite cathode composed of Sr-doped LaMnO3 (LSM) and yttria-stabilized zirconia (YSZ) on its sintering behavior. LSM-YSZ composite powders were synthesized by a particle-dispersed glycine-nitrate process using YSZ particles as inclusions in the LSM precursor solution. The dispersion state of the YSZ particles in the solution was varied from a well-dispersed state to a highly flocculated state through adjustment of the amount of adsorbed polyethylene glycol. The dispersion state of the component powders was found to strongly impact the densification behavior of the composite, which was explained by the formation of a continuous network of the “slow-sintering” inclusion particles. A highly porous structure with phase connectivity and sufficient triple phase boundaries could be achieved by enhancing the mixing homogeneity and optimizing the mixing scale. The proposed concept provides new insights into the microstructural evolution of composites in constrained sintering, and it could potentially enable development of the ideal electrode structure for SOFCs.  相似文献   

7.
An economic and environment friendly process was adapted to synthesize new dielectric composite materials. Using ethylene vinyl acetate (EVA)/vinyl ester of versatic acid (VeoVa) terpolymer as an aqueous emulsion provides a homogenous dispersion of BaTiO3 (BT) particles, due to the high viscosity and polarity of the vinyl resin (VR). Composites films were obtained from these dispersions by water evaporation. The evolution of the dielectric properties as a function of the BaTiO3 content, was correctly fitted by a Maxwell‐Garnett model. This fitting of the experimental curve shows a good dispersion of filler in the vinyl resin and the particles separation by a layer of resin as expected for the preparation method used in this study. The VR/BT composites show good synergy between the dielectric properties of the different phases of the composites due to the formation of macrodipoles and to the strong interactions between polar EVA/VeoVa groups and the BaTiO3 particles surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44333.  相似文献   

8.
Polypropylene–clay nanocomposites were prepared by a solution technique and a subsequent melt‐mixing process. A titanate coupling agent was used to improve the compatibility of the nanoclay particles with the polypropylene. The dispersion of the nanoclay particles in polypropylene was studied with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). An increased d‐spacing value of the clay particles in the nanocomposites was observed, and it was compared with the values of as‐mined (pristine) and as‐received (organophilic) clay particles. The number of intercalated layers in a single clay crystallite was determined to be 4, and the number was confirmed with XRD data and TEM images. On the basis of the Daumas–Herold model (which is widely used for graphite intercalation compounds), the stage 2 and stage 3 structures of montmorillonite particles in polypropylene were recommended. A study on the stage structure suggested a way of determining the presence of polymer molecules in the clay galleries. The results confirmed the existence of single‐layered platelets with improved dispersion in polypropylene. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 218–226, 2005  相似文献   

9.
Multi-walled carbon nanotube (MWCNT) reinforced silicon nitride composites have been prepared by hot isostatic pressing at 20 MPa and gas pressure sintering at 2 MPa. To assure a good dispersion of the MWCNTs a highly efficient attritor milling was employed in the preparation process of the powder mixtures. The morphological and micro-structural evolution of the powder particles during the high-energy milling was monitored.We have found that the milling time has a complex influence on the structure and mechanical properties of the resulting nanocomposites through affecting both the dispersion and degradation of the nanoscale filler as well as the phase transformations of the ceramic host.  相似文献   

10.
The mechanism of seeded dispersion polymerization of methyl methacrylate (MMA) was investigated by employing submicron fluorescent polymer particles as seed. These poly(methyl methacrylate) latex particles, containing fluorescent material, were synthesized by a two‐step miniemulsion polymerization process and then applied in the seeded dispersion polymerization of MMA. The seed particles were located by tracking the fluorescent signal in the micron‐size final particles. The analysis of the final particles showed that most of them contained more than two seed particles. On average, there were 3.7 seed particles in each final particle as obtained under the given conditions of the seeded dispersion polymerization. The location of the seed within the particles being well‐separated from each other was considered to indicate that the aggregation of the particles did not occur immediately, but took place after some particle growth had first taken place. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Two distinctively different seeded dispersion polymerization processes employing micron and submicron size seed particles, respectively, have been used to gain a better mechanistic understanding of the dispersion polymerization process. Using monodisperse micron-size PMMA particles as seed, it was found that when low monomer/polymer ratios (M/P < 2.50) were used in methyl methacrylate (MMA) seeded dispersion polymerizations, particle growth dominates and the number of particles remains unchanged (i.e., narrow distributions are preserved). However, when higher M/P ratios (>2.50) were applied, bimodal or trimodal particle size distributions were produced, which is considered to result from the competition between particle growth and secondary nucleation. When small amounts of submicron seeds were used with the initial intention of gaining a better understanding of the nucleation process, it was surprisingly found that the final number of micron size particles was nearly the same as the initial number of submicron seed particles over a relatively wide range of reaction conditions, including seed, initiator, stabilizer, and monomer concentrations, and the medium composition. These results indicate that within certain limits seeded dispersion polymerization can be a more robust means of controlling particle size than ab initio dispersion polymerization in terms of reproducibly producing a target particle size. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
In this article, numerical simulation of the Navier-Stokes equations was performed for the large-scale structures of a two-dimensional temporally developing cylinder flow and the associated dispersion patterns of particles were simulated. The time-dependent Navier-Stokes equations were integrated in time using a mixed explicit-implicit operator splitting rules. The spatial discretization was processed using spectral-element method. Non-reflecting conditions were employed at the outflow boundary. Particles with different Stokes numbers were traced by the Lagrangian approach based on one-way coupling between the continuous and the dispersed phases.

The simulation results of the flow field agree well with experimental data. Due to the effects of the coherent structures, the particles demonstrate a more organized dispersion process in the space and a periodic dispersion characteristic in the time. Particle dispersion increases with the flow Reynolds number and so does for particle concentration, which is independent of particle size. However, for particles at different Stokes numbers, the dispersion patterns are different. The particles at smaller Stokes number congregate mainly in the vortex core regions and the particles at larger Stokes number disperse much less along the lateral direction with the even distribution. The higher density distribution at the outer boundary of large-scale vortex structure characterizes the dispersion pattern of particles at the Stokes numbers of order of unity. Furthermore, these particles disperse largely along the lateral direction and show the nonuniform distribution of concentration.  相似文献   

13.
The dispersion process is used in various industries, including coatings, paper manufacturing, and food processing. All of these industries base their developments and technology of particle dispersion on theories that consider spherical particles in simple systems. The objective of this study was to improve understanding of the impact of these theories when applied to nonspherical/nonideal particles. Effective dispersion allows for a reduction in the use of the powder to achieve the specified final properties. This paper reports experimental results on the required energy (RE) used to disperse five different titanium dioxide (TiO2) samples into liquids with different values of surface tension [deionized (DI) water and DI water containing surfactants]. The selection of the TiO2 samples was based on different particle sizes with the same surface properties, and similar sizes with different surface properties. The results showed that the particle shape is fundamental in determining the RE for dispersion, once it defines the number of interactions among the particles. The larger the number of interactions, the more energy is required to deagglomerate the particles. An empirical equation was developed to describe the energy required for pigment dispersion as a function of the ratio between the liquid and the particle surface tensions and the particle shape factor.  相似文献   

14.
For many applications nanoparticles have to be suspended in a fluid phase and dispersed into primary particles or to a definite agglomerate size. Thereby, the prediction of the dispersion kinetic is important among others for comparing the energy efficiency of different dispersion machines. The kinetic models existing today are not able to describe the kinetics over the entire process time correctly. Moreover, a prediction of the dispersion kinetics for new process parameters is not possible. For characterizing the dispersing process and deriving an enhanced model for the dispersion kinetic the stress intensity and the number of stress events in different dispersing machines were investigated. The dispersion kinetic was investigated by dispersing Alumina Alu C (Aeroxide® Alu C, evonik) in distilled water and glycerol using a dissolver, kneader, 3-roller-mill and stirred media mill. Based on these investigations a new model was developed which is able to describe the dispersion process for different dispersing machines and operating parameters with high accuracy. The new model allows the prediction of the minimum reachable end-particle-size in the studied dispersion process and at varying process parameter based on only a few data points. Within the new model the dispersion kinetics depends on two fit parameters, which are only a function of stress intensity and stress frequency alone. Moreover, using the characteristic parameters stress intensity and stress number the dispersion kinetics for new process parameters can be predicted.  相似文献   

15.
Axial and lateral mixing of fine particles in a binary-solid riser have been investigated using a phosphor tracer method. The measured bimodal residence time distribution (RTD) demonstrated two types of axial dispersions of the fines: the dispersion of discrete particles and that of clusters. A proposed one-dimensional, bimodal dispersion model describes the bimodal RTDs very well. The axial Peclet number of the fines is not sensitive to the fraction of coarse particles, gas velocity and solids circulation rate. Lateral solids dispersion was determined by measuring the solids RTD at different radii using a point source tracer injection. A two-dimensional dispersion model describes the measured RTDs satisfactorily. Lateral solids mixing decreased as coarse particles were added into the riser. Correlations of the axial and lateral Peclet numbers obtained fit the experimental data well.  相似文献   

16.
Horng-Jer Tai 《Polymer》2008,49(9):2328-2333
The Maxwell–Wagner–Sillars relaxation behavior of poly(butylene succinate) during melting and recrystallization at 383 K was studied. It was found that the polarization originates from the three-phase structure of the dispersion of spherulites in the crystallizing melt. A model made up of a conductive melt matrix and a dispersion of spherical semicrystalline particles was proposed. The semicrystalline particles were composed of continuous, nonconductive crystals and spherical amorphous inclusions with the conductivity of the melt matrix. The three-phase Bruggeman–Hanai theoretical equations for interfacial polarization were employed and the relaxation behavior were successfully simulated. Three parameters – the melt conductivity, the volume fraction of the semicrystalline particles, and the amorphous fraction within these particles are obtained by fitting the theoretical equations to the experimental data. Their relationships with the morphological development during the recrystallization process were correspondingly discussed.  相似文献   

17.

A Monte Carlo method was developed to simulate multicomponent aerosol dynamics, specifically with simultaneous coagulation and fast condensation where the sectional method suffers from numerical diffusion. This method captures both composition and size distributions of the aerosols. In other words, the composition distribution can be obtained as a function of particle size. In this method, particles are grouped into bins according to their size, and coagulation is simulated by statistical sampling. Condensation is incorporated into the Monte Carlo method in a deterministic way. If bins with fixed boundaries are used to simulate the condensation process numerical dispersion occurs, and thus a moving bins approach was developed to eliminate numerical dispersion. The method was validated against analytical solutions, showing excellent agreement. An example of the usefulness of this model in understanding aerosol evolution is presented. The effects of the number of particles and number of bins on the accuracy of the numerical results are also discussed. It was found that with 20 bins per decade and 105particles in the control volume results with less than 5%error can be obtained. The results are further improved to within 2%error by filtering the statistical noise with a cubic spline algorithm.  相似文献   

18.
In this work, we show that straight forward extensions of the existing techniques to solve 2-d population balance equations (PBEs) for particle breakup result in very high numerical dispersion, particularly in directions perpendicular to the direction of evolution of population. These extensions also fail to predict formation of particles of uniform composition at steady state for simultaneous breakup and aggregation of particles, starting with particles of both uniform and non-uniform compositions. The straight forward extensions of 1-d techniques preserve 2n properties of non-pivot particles, which are taken to be number, two masses, and product of masses for the solution of 2-d PBEs. Chakraborty and Kumar [2007. A new framework for solution of multidimensional population balance equations. Chemical Engineering Science 62, 4112-4125] have recently proposed a new framework of minimal internal consistency of discretization which requires preservation of only (n+1) properties. In this work, we combine a new radial grid [proposed in 2008. part I, Chemical Engineering Science 63, 2198] with the above framework to solve 2-d PBEs consisting of terms representing breakup of particles. Numerical dispersion with the use of straight forward extensions arises on account of formation of daughter particles of compositions different from that of the parent particles. The proposed technique eliminates numerical dispersion completely with a radial distribution of grid points and preservation of only three properties: number and two masses. The same features also enable it to correctly capture mixing brought about by aggregation of particles. The proposed technique thus emerges as a powerful and flexible technique, naturally suited to simulate PBE based models incorporating simultaneous breakup and aggregation of particles.  相似文献   

19.
阳离子水性聚氨酯的相反转与性能   总被引:1,自引:0,他引:1  
引言 水性聚氨酯通常是在多元醇和多异氰酸酯加成反应而得的预聚物中引入亲水扩链剂二羟甲基丙酸、甘油单酸酯[1]、酒石酸[2]或二乙烯三胺[3]、二溴丁二酸、N-甲基二乙醇胺[4]等,经中和后,在高速搅拌下将离子化聚氨酯加至水中,或将水加至聚氨酯离聚体有机溶液中,形成聚氨酯水分散液.Dieterich[5]和Lorenz[6,7]及Chan[8]等用黏度法和电导率法研究了阳离子型聚氨酯10%的丁酮溶液在不同温度下加水分散的相转变过程, 认为全过程可分为硬段区表面离子基团吸附水而分离、水进入硬段的无序和有序区、软硬段区重组形成分散微粒的3个阶段,相转变过程与硬段结构、离子基团含量和分散温度相关;寇波[9]、鹿秀山[10]等研究了阴离子型离聚体的50%丁酮溶液的相转变,结果表明,随着软段相对分子质量升高,体系的相转变点后延,聚酯体系的相转变比聚醚体系的相转变发生得早.  相似文献   

20.
Uniformly dispersed yttrium aluminum garnet (Y3Al5O12, YAG) ultrafine powders were synthesized by co-precipitating a mixed solution of aluminum and yttrium nitrates with ammonium hydrogen carbonate in the presence of sodium dodecyl sulfate (SDS) as dispersing agent. The primary purpose of introducing SDS was to protect YAG particles from agglomeration. The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by thermogravimetry/differential scanning calorimetry, X-ray diffraction, infrared spectra and scanning electron microscopy. The results showed that phase-pure YAG powders could be achieved by calcination of the precursor at 900 °C for 2 h. Uniformly dispersed YAG powders with a particle size of approximately 90-100 nm were obtained with optimum molar ratio of Al3+ to SDS at 2. And excessive SDS restrained good dispersion of the YAG powders. The dispersion mechanism of SDS in the preparation process was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号