首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The solids mixing in a riser with a height of 10 m and 0.186 m inner diameter was investigated by using pneumatic phosphor tracer technique. Considering the shielding effect of the bed material on the light emitted from the phosphor tracer particle, a modified method for the phosphor tracer measurement is proposed. And then the curves of particle residence time distribution were obtained. The experimental results show that the particle diffusion mechanism can be explained by the dispersions of dispersed particles and particle clusters in the axial direction, and as well the core-annulus nonuniform distribution of the solids fraction in the radial direction of the riser. Moreover, based on the experimental results, a two-dimensional dispersion model was established to predict the solids axial and radial diffusion. Furthermore, the effects of superficial gas velocity and solids circulating flux on the axial and radial Peclet number of the particles were discussed; two empirical correlation formulas about the axial and the radial Peclet numbers were given; the calculated values agree well with the experimental results.  相似文献   

2.
Cang Huang 《Powder Technology》2008,182(3):334-341
The nano-particles mixing behavior in a nano-agglomerate fluidized bed (NAFB) using R972, a kind of nano-SiO2 powder, was investigated by the nano-particle coated phosphors tracer method. The axial and radial solids dispersion coefficients in this system were two orders of magnitude lower than those in fluid catalytic cracking (FCC) catalyst systems. The axial solids dispersion coefficient increased with increasing superficial gas velocities, and ranged between 9.1 × 10− 4 and 2.6 × 10− 3 m2/s. There was a step increase in the axial solids dispersion coefficient between the particulate fluidization regime and bubbling and turbulent fluidization regimes. As the superficial gas velocity increased, the radial solids dispersion coefficient increased gradually, from 1.2 × 10− 4 to 4.5 × 10− 4 m2/s. The much smaller Da and Dr, compared to regular fluidized systems, is mainly due to the reduced density difference between the fluidized particles and fluidizing medium. To validate this, the solids dispersion coefficients in the NABF were compared with literature values for liquid-solid particulate systems in the particulate fluidization regime and FCC systems in the bubbling and turbulent fluidization regimes. The density difference between the fluidized particles and fluidizing medium and kinetic viscosity of the fluidizing medium, and other hydrodynamic factors like the superficial velocity of the fluidizing medium and the average diameters of the fluidized particles, were the key factors in the solids mixing in the fluidized beds. Empirical correlations are given to describe the results.  相似文献   

3.
An axial dispersion of gas in a circulating fluidized bed was investigated in a fluidized bed of 4.0 cm I.D. and 279 cm in height. The axial dispersion coefficient of gas was determined by the stimulus-response method of trace gas of CO2. The employed particles were 0.069 mm and 0.147 mm silica-sand. The results showed that axial dispersion coefficients were increased with gas velocity and solid circulation rates as well as suspension density. The experimentally determined axial dispersion coefficients in this study were in the range of 1.0-3.5 m2/s.  相似文献   

4.
A method is described to independently estimate the solids velocity and voidage in the moving bed portion of the NETL circulating fluidized bed (CFB). These quantities are used by a device that continuously measures the solids circulation rate. The device is based on the use of a rotating Spiral vane installed in the standpipe of a circulating fluid bed (CFB). Correlations were developed from transient experiments and steady state mass balance data to correct the solids velocity and solids fraction in the standpipe as a function of standpipe aeration rate. A set of statistically-designed experiments was used to establish the need for these corrections and to verify the accuracy of solid circulation rate measurements after correction. The differences between the original and corrected measurements were quantitatively compared.  相似文献   

5.
Gas/solid and catalytic gas phase reactions in CFBs use different operating conditions, with a strict control of the solids residence time and limited back-mixing only essential in the latter applications. Since conversion proceeds with residence time, this residence time is an essential parameter in reactor modelling. To determine the residence time and its distribution (RTD), previous studies used either stimulus response or single tracer particle studies.The experiments of the present research were conducted at ambient conditions and combine both stimulus response and particle tracking measurements. Positron emission particle tracking (PEPT) continuously tracks individual radioactive tracer particles, thus yielding data on particle movement in “real time”, defining particle velocities and population density plots.Pulse tracer injection measurements of the RTD were performed in a 0.1 m I.D. riser. PEPT experiments were performed in a small ( I.D.) riser, using 18F-labelled sand and radish seed. The operating conditions varied from 1 to 10 m/s as superficial velocity, and 25- as solids circulation rate.Experimental results were compared with fittings from several models. Although the model evaluation shows that the residence time distribution (RTD) of the experiments shifts from near plug flow to perfect mixing (when the solids circulation rate decreases), none of the models fits the experimental results over the broad (U,G)-range.The particle slip velocity was found to be considerably below the theoretical value in core/annulus flow (due to cluster formation), but to be equal at high values of the solids circulation rate and superficial gas velocity.The transition from mixed to plug flow was further examined. At velocities near Utr the CFB-regime is either not fully developed and/or mixing occurs even at high solids circulation rates. This indicates the necessity of working at U> approx. ( to have a stable solids circulation, irrespective of the need to operate in either mixed or plug flow mode. At velocities above this limit, plug flow is achieved when the solids circulation rate . Solids back-mixing occurs at lower G and the operating mode can be described by the core/annulus approach. The relative sizes of core and annulus, as well as the downward particle velocity in the annulus (∼Ut) are defined from PEPT measurements.Own and literature data were finally combined in a core/annulus vs. plug flow diagram. These limits of working conditions were developed from experiments at ambient conditions. Since commercial CFB reactors normally operate at a higher temperature and/or pressure, gas properties such as density and viscosity will be different and possibly influence the gas-solid flow and mixing. Further tests at higher temperatures and pressures are needed or scaling laws must be considered. At ambient conditions, reactors requiring pure plug flow must operate at and . If back-mixing is required, as in gas/solid reactors, operation at and is recommended.  相似文献   

6.
The effects of particle properties (particle density, size and sphericity) on solids concentration in a 2-D riser were comprehensively investigated by measuring the axial and lateral solids concentration with an optical fiber probe. In this study, solids concentration of different types of particles shows that heavier particles have higher solids concentration laterally and axially than lighter particles; larger particles result in more compact solids distribution and such size effect is more evident at the riser bottom; more spherical particles lead to higher solids concentration. Various forces acting on particles and the change in the slip velocity between gas and particles were used to explain the effects of particle properties on solids distribution.  相似文献   

7.
Mitali Das 《Powder Technology》2007,178(3):179-186
Segregation and mixing effects of binary mixtures of particles having difference in sizes and densities were studied in 0.1016 m-diameter riser of a circulating fluidized bed at gas velocities between 2.01 and 4.681 m/s and solids circulation rate between 12.5 and 50 kg/m2 s. Two groups of bed materials (three quartz sand-spent fcc catalyst mixtures with different initial mass % of sand and two coal-iron mixtures, one with almost same sizes but with different densities and the other having both different sizes and densities) were used. Using local axial mass % of heavier/coarser particles and their mean sizes the extent of segregation was evaluated. The influence of operating conditions like superficial gas velocity and solids circulation rate on segregation was examined and found that with their increase segregation effects generally tend to decrease and a uniform mixture conforming to initial composition of the mixture results. Using the data available in the literature and those of the present authors an empirical correlation to obtain the extent of segregation in CFBs has been proposed.  相似文献   

8.
Xiao-Bo Qi 《Powder Technology》2008,183(3):417-425
To investigate solids concentration in the fully developed region of co-current downward gas-solid flow, actual solids concentrations were measured in a circulating fluidized bed (CFB) downer with 9.3 m in height and 0.1 m in diameter using a fiber optical probe. The results obtained from this work and in the literature show that the average solids concentration in the fully developed region of the CFB downers is not only a function of the corresponding terminal solids concentration, but the operating conditions and particle properties also have influences on the average solids concentration in the fully developed region of the CFB downers. Particle diameter and density affect the solids concentrations differently under different operating conditions. Downer diameters almost have no influence on the solids concentrations. By taking into account the effects of operating conditions, particle properties and downer diameters, an empirical correlation to predict the solids concentrations in the fully developed region of CFB downers is proposed. The predictions of the correlation are in good agreement with the experimental data of this work and in the literature.  相似文献   

9.
Experiments of gas mixing between two half-beds were performed in a dual-leg circulating fluidized bed(DL-CFB)240 mm in width,40 mm in depth and 2000 mm in height by using glass beads with diameter of 0.25-0.28 mm as bed material.SO2 and CO as the gas tracers entering the left and right distributors separately were used to simulate the gas mixing between the two legs.MSD(mean square displacement)model was adopted to calculate the gas dispersion coefficient(Dw)which was used to investigate the effect of fluidization velocity and bed material inventory on gas mixing in the DL-CFB.The experimental results showed that Dw was about 50-300 cm2-1 at different fluidization velocities and bed material inventories.A higher fluidization velocity benefited particles exchange between two half-beds,which intensified the gas-solids interactions at the region with higher solids volume fraction.The gas mixing in the lower region of the DL-CFB was stronger than that in the upper region of the bed.A higher bed inventory was helpful to gas mixing at a lower fluidization velocity,while a higher fluidization velocity weakened gas mixing because of higher solids concentration in the center of the bed that prevented gas mixing.  相似文献   

10.
A cold model of a circulating fluidized bed having a two-dimensional riser, with a 12 × 120 mm section and a 6.4 m height, was equipped with a device to inject a lateral gas stream along the riser. The apparatus was operated under conditions ranging from those characteristic of combustors to those of gas-conversion processes. Flow structures in the interaction region between the rising gas—solids suspension and the lateral gas stream were studied by means of a motion analysis system. Three main configurations were identified. The ratio between the momentum of the lateral gas stream and that of the rising suspension was found to be the parameter able to discriminate among the three configurations. A satisfactory agreement was found with mixing data obtained using a cylindrical riser.  相似文献   

11.
The solids concentration in a circulating fluidized bed of flue gas desulfurization (CFB-FGD) is low, and the gas-solid mixing needs to be strengthened to improve the reaction efficiency. The addition of internals in a square CFB-FGD is studied here. Different sizes of wedge-shaped internals were set in the middle of the riser on opposite sides of the bed, at same height or at different heights. By comparing the concentration distributions, we found that positioning the internals at different heights is more effective in increasing the density of the center region. By observing the radial distribution of the fractal dimension, we found that a strong degree of turbulence can improve the gas-solid mixing. A larger upper/smaller lower arrangement of the internals with a moderate apparent gas velocity provided the best flow field, with increased concentration gradients and improved gas-solid mixing.  相似文献   

12.
Circulating fluidized bed (CFB) combustion systems are increasingly used as superior coal burning systems in power generation due to their higher efficiency and lower emissions. However, because of their non-linearity and complex behavior, it is difficult to build a comprehensive model that incorporates all the system dynamics. In this paper, a mathematical model of the circulating fluidized bed combustion system based on mass and energy conservation equations was successfully extracted. Using these correlations, a state space dynamical model oriented to bed temperature has been obtained based on subspace method. Bed temperature, which influences boiler overall efficiency and the rate of pollutants emission, is one of the most significant parameters in the operation of these types of systems. Having dynamic and parametric uncertainties in the model, a robust control algorithm based on linear matrix inequalities (LMI) have been applied to control the bed temperature by input parameters, i.e. coal feed rate and fluidization velocity. The controller proposed properly sets the temperature to our desired range with a minimum tracking error and minimizes the sensitivity of the closed-loop system to disturbances caused by uncertainties such as change in feeding coal, while the settling time of the system is significantly decreased.  相似文献   

13.
Solids mixing data of high quality is one of the most crucial steps for quantitative studies, but it is a difficult task to obtain in a fluidized bed especially with a 3D configuration. Therefore a novel sampling technique is developed with bed collapse method, for measuring lateral mixing of feed particles in a 3D fluidized bed. The sampling tool is designed using a “bottom‐to‐top sampling” idea. Its development, configuration and measurement repetition are discussed in detail. The effects of mixing time, fluidizing gas velocity, and particle size of bed material on the tracer distribution are investigated. A quantitative comparison of lateral dispersion coefficient shows that our results agree fairly well with measurements and predictions of correlations for lab‐scale fluidized systems in previous studies. The presented 2D profiles of the lateral mixing can be used to validate fundamental solids mixing models or verifying convenient measurement techniques. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

14.
The hydrodynamics of solids (FCC) recycle in a loop-seal (0.08 m) at the bottom of the downcomer (0.08 m-I.D.x4.0 m-high) in a circulating fluidized bed (0.1 m-I.D.x 5.3 m-high) have been determined. Solid flow rate through the loop-seal increases linearly with increasing aeration rate. At the same aeration rate, the maximum solid flow rate can be obtained at a loop-seal height-to-diameter ratio of 2.5. The effects of solid inventory, solid circulation rate and gas velocity on pressure balance around the CFB have been determined. At a given gas velocity and solid circulation rate, pressure drops across the downcomer and loop-seal increase linearly with increasing solids inventory in the bed. At a constant solid inventory, pressure drops across the riser and the downcomer increase with increasing solid circulation rate but decrease with increasing gas velocity in the riser. The obtained solid flow rate has been correlated with pressure drop across the loop-seal.  相似文献   

15.
Based on measurements in a circulating fluidized test unit with a riser of 0.4 m i.d., a two-dimensional two-phase model for gas mixing has been developed. Radial gas dispersion and gas backmixing caused by dense clusters falling countercurrently to the main flow of a lean gas/solid suspension are considered. The model has successfully been compared with experimental data over a wide range of operating conditions. The model accounts for the main mixing phenomena and may be applied to calculations of chemical reactions in CFB risers.  相似文献   

16.
A method using an optical mouse sensor was developed to monitor the moving velocity of a solid mass. Calibration was carried out using a rotating plate. Results clarified that the developed method is useful to monitor the velocity up to some limit (v < 0.3 m/s), which depends on the optical mouse sensor used. A solid circulation rate in a circulating fluidized bed (CFB) was measured using this method. Results obtained using this method show agreement with those of visual observations.  相似文献   

17.
A comparison study on the axial and lateral mixing of wide-size-distribution (WSD) particles with normal-size-distribution (NSD) FCC particles is presented. The fines smaller than 20 μm contribute 24.5% in volume in the WSD particles. Phosphor tracer method is used. The axial backmixing of the WSD is slightly lower than the NSD. However, the lateral solids Peclet number increases linearly with the increase of the content of fines smaller than 20 μm because of the serious agglomeration of the fines, which leads to very poor lateral mixing for the WSD particles. And the solids lateral mixing for the WSD particles decreases significantly with increasing solids fraction. These results show that the particle size and the particle-size-distribution is a very important factor that controls the lateral solids mixing and hence the heat and mass transfer in lateral direction, which should be taken into full consideration in the riser reactor. And the NSD may be a good particle size distribution for the FCC riser, the lateral solids mixing of which is satisfactory in the reactor.  相似文献   

18.
Z.Q Li  C.N Wu  F Wei  Y Jin 《Powder Technology》2004,139(3):214-220
Experiments were carried out in a specially designed high-density coupled circulating fluidized bed system. Fluidized catalytic cracking (FCC) particles (ρp=1300 kg/m3, dp=69 μm) were used. When the solids circulation flux is 400 kg/m2·s, the apparent solids holdup exceeds 20% near the top of the riser A, and the volumetric solids fraction (apparent solids holdup) is larger than 5.2% in the fully developed region of the downer. Hence, a high particle suspension density covers the entire coupled CFB system. Under the high-density conditions, the primary air rate had a small influence on the solids circulation flux, while the secondary air rate had an important effect on it. The results indicate a particle acceleration region and a fully developed region were identified along the downer from the pressure gradient profiles. In the fully developed region of the downer, the volumetric solids fraction increases with increasing solids circulation flux or decreasing superficial gas velocity U1.  相似文献   

19.
The research was conducted in a cold flow circulating fluidized bed (CFB). The diameter and height of riser are 5 and 200 cm, respectively. The objective is to study effect of gas velocity on hydrodynamic of glass beads having mean diameter of 547 micron and density of 2,400 kg/m3. The measurement of particle velocity profile was achieved by using a high-speed camera and an image processing software. A probe of 0.5 cm in diameter was inserted into the riser at the height of 110 cm from gas distributor and was set at 3 positions along the radius of the riser; 0, 0.6, and 1.8 cm from center. Transport velocity (U tr ), core-annulus velocity (V CA ) and minimum pneumatic velocity (V mp ) were employed in determining solid flow pattern in the riser. It was observed that the flow regimes changed from fast fluidization to core-annulus and to homogeneous dilute bed when the gas velocities increased from 7, 8 and 9 m/s, respectively. The results from high-speed camera showed that glass beads velocity existed a maximum value at the center of the riser and gradually decreased toward the wall for all three gas velocities. It was also found that most of solid traveled upward in the core of the riser, however, solid traveled downward was identified at the wall layer.  相似文献   

20.
CFBs are increasingly used for both gas-catalytic and gas-solid reactions. The conversion is a function of the gas hydrodynamics, subject of the present research.Available literature on the gas mixing in the riser of a CFB shows contradictory results: some investigators neglected back-mixing of gas, whereas others report a considerable amount of back-mixing in CFB risers. The present paper reports experimental findings obtained in a 0.1 m I.D. riser, for a wide range of combined superficial gas velocity (U) and solid circulation flux (G). The gas flow mode (plug vs. mixed) is strongly affected by the operating conditions, however with a dominant mode within a specific (U, G)-range. Sand was used as bed material. The superficial gas velocity was varied from 5.5 to 8.3 m/s, the solids circulation flux was between 40 and 170 kg/m2 s. A tracer pulse response technique was used with a pulse of propane injected at the bottom and detected at the riser exit. The cumulative response curves, F(t), define (i) an average residence time (t50) obtained for F(t) = 0.5; and (ii) the slope of the curves (a steeper one corresponding with more pronounced plug flow) and expressed in terms of a span, σ. These parameters (t50 and σ) define the gas flow mode. A quantitative comparison of experimental results with literature RTD-models is inconclusive although the occurrence of both mixed flow and plug flow is evident, and (U, G)-dependent. The experimental results are expressed in empirical design equations, and the comparison of predicted and experimental results is fair: low values of σ determine the plug flow regimes, whereas back-mixing is more pronounced at higher value of σ. Experiments with similar systems might favor plug flow or mixing as function of the combined (U, G)-values. The introduction of the RTD-function in reaction rate equations can improve the prediction of the gas-conversion in a riser-reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号