首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of well-defined double hydrophilic graft copolymers, poly(acrylic acid)-g-poly(N-isopropylacrylamide) (PAA-g-PNIPAM), was employed as a novel water-soluble coating for constructing superparamagnetic iron oxide nanoparticles. The copolymer was synthesized via a three-step procedure: firstly, a well-defined hydrophobic PtBA-based backbone, poly(tert-butyl 2-((2-chloropropanoyloxy)-methyl)acrylate)-co-poly(tert-butyl acrylate), (PtBCPMA19-co-PtBA18), was prepared through RAFT copolymerization of a new trifunctional acrylic monomer, tert-butyl 2-((2-chloropropanoyloxy)methyl)acrylate and tert-butyl acrylate; secondly, taking this backbone as a macroinitiator to initiate SET-LRP of N-isopropylacrylamide resulted in well-defined (poly(tert-butyl 2-((2-chloropropanoyloxy)methyl)-acrylate)-co-poly(tert-butyl acrylate))-g-poly(N-isopropylacrylamide) ((PtBCPMA-co-PtBA)-g-PNIPAM) amphiphilic graft copolymers with relatively narrow polydispersities (Mw/Mn ≤ 1.31); thirdly, handling (PtBCPMA-co-PtBA)-g-PNIPAM in acidic conditions afforded PAA-g-PNIPAM graft copolymers. The resulting PAA-g-PNIPAM copolymers were directly utilized as a polymeric stabilizer in the preparation of superparamagnetic Fe3O4 nanoparticles. The particle size can be readily tuned in the range of 12.1–23.2 nm by varying the amount of PAA-g-PNIPAM copolymer or the length of PNIPAM side chain. Besides, the structure and properties of prepared Fe3O4/polymer nanocomposites were characterized by XRD, FT-IR, TGA, TEM, and magnetic measurement in detail.  相似文献   

2.
Two types of reversible hydrogels formed by poly(t-butyl acrylate)-poly(2-vinyl pyridine)-poly(t-butyl acrylate) (PtBA-P2VP-PtBA) and poly(acrylic acid)-poly(2-vinyl pyridine)-poly(acrylic acid) (PAA-P2VP-PAA), named telechelic polyelectrolyte and block polyampholyte, respectively, of the same degree of polymerization were studied in aqueous solutions at pH 3.7 in terms of their rheological properties. The different structural characteristics of the formed 3D networks that arise from hydrophobic interactions of the telechelic polyelectrolyte and electrostatic interactions of the polyampholyte, lead to significant different rheological properties. The results tend to show that a thermo-sensitive weak hydrogel is formed by the polyampholyte while a stiff, but fragile, hydrogel is formed by the telechelic polyelectrolyte.  相似文献   

3.
A series of amphiphilic triblock copolymers poly(ethylene glycol)-block-poly(acrylic acid)-block-poly(n-butyl acrylate) (PEG-b-PAA-b-PnBA) differing only in the relative block lengths were synthesized by the acid-catalyzed elimination of the tert-butyl groups from poly(ethylene glycol)-block-poly(tert-butyl acrylate)-block-poly(n-butyl acrylate) (PEG-b-PtBA-b-PnBA), which was synthesized by atom-transfer radical polymerization (ATRP). The degree of polymerization, molecular weight and percentage of hydrolysis of the product PEG-b-PAA-b-PnBA were studied by gel permeation chromatography (GPC), NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to study the aggregation states of copolymers in water solution. The radii of the copolymer micelles shrink as Ca2+ is introduced into the solutions. The crystallization behaviors of calcium carbonate controlled by copolymer 1 (PEG112-b-PAA86-b-PnBA60) and copolymer 2 (PEG112-b-PAA40-b-PnBA72) differing mainly in the length of PAA block were systematically studied. It was found that the crystallization products are composed of calcite and vaterite, and the ratio of vaterite to calcite increases with increasing the concentration of copolymer 1. For copolymer 2, however, only calcite is obtained at all the concentration range investigated in this work.  相似文献   

4.
The polymerization of p-(iodomethyl)styrene (PIMS) yields well-defined branched polymers with reactive iodomethyl groups. The branched poly[p-(iodomethyl)styrene] was used as the transfer agent in the iodine mediated radical polymerization of vinyl monomers. The polymerization proceeds in a controlled way and yields polystyrene and poly(t-butyl acrylate) star polymers with reactive groups at the end of their arms. Polymers so obtained were also used to prepare stars with block copolymer arms: polystyrene-block-poly(t-butyl acrylate). The characterization of star structures was performed by NMR and gel permeation chromatography with absolute molar mass detection (MALLS). Preliminary characterization of the thermal properties of these novel materials is reported.  相似文献   

5.
Ronghua Zheng  Tze-Chi Jao 《Polymer》2007,48(24):7049-7057
Poly[(2-ethylhexyl acrylate)-ran-(tert-butyl acrylate)]-block-poly(2-cinnamoyloxyethyl acrylate) or P(EXA-r-tBA)-PCEA was synthesized by atom transfer radical polymerization. Reactivity ratios of EXA and tBA for copolymerization were determined. The specific refractive index increments of six diblocks were measured as a function of their composition. The diblocks were thermally stable and formed micelles in an automobile engine oil. Such micelles may be useful as an anti-friction additive in lubricating oils.  相似文献   

6.
Jeremy M. Rathfon 《Polymer》2008,49(7):1761-1769
Polymers exhibiting a thermoresponsive, lower critical solution temperature (LCST) phase transition have proven to be useful for many applications as “smart” or “intelligent” materials. A series of poly(N-isopropylmethacrylamide) (PNIPMAM) polymer, poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PNIPMAM-b-PAA) diblock, and poly(acrylic acid)-b-poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PAA-b-PNIPMAM-b-AA) triblock copolymer samples were synthesized via ATRP. A facile post-functionalization route was developed that uses an activated ester functionality to convert poly(N-methacryloxysuccinimide) (PMASI) blocks to LCST capable polyacrylamide, while poly(t-butyl acrylate) (PtBA) blocks were converted to water-soluble poly(acrylic acid) (PAA). The post-functionalization was monitored via 1H NMR and ATR-FTIR. The aqueous solution properties were explored and the PNIPMAM polymers were shown to have a LCST phase transition varying from 35 to 60 °C. The ability to synthesize block copolymers that are thermoresponsive and water-soluble will be of great benefit for broader applications in drug delivery, bioengineering, and nanotechnology.  相似文献   

7.
Core-shell cylindrical polymer brushes with poly(t-butyl acrylate)-b-poly(n-butyl acrylate) (PtBA-b-PnBA) diblock copolymer side chains were synthesized via ‘grafting from’ technique using atom transfer radical polymerization (ATRP). The formation of well-defined brushes was confirmed by GPC and 1H NMR. Multi-angle light scattering (MALS) measurements on brushes with 240 arms show that the radius of gyration scales with the degree of polymerization of the side chains with an exponent of 0.57±0.05. The hydrolysis of the PtBA block of the side chains resulted amphiphilic cylindrical core-shell nanoparticles. In order to obtain a narrow length distribution of the brushes, the backbone, poly(2-hydroxyethyl methacrylate), was synthesized by anionic polymerization in addition to ATRP. The characteristic core-shell cylindrical structure of the brush was directly visualized on mica by scanning force microscopy (SFM). Brushes with 1500 block copolymer side chains and a length distribution of lw/ln=1.04 at a total length ln=179 nm were obtained. By choosing the proper solvent in the dip-coating process on mica, the core and the shell can be visualized independently by SFM.  相似文献   

8.
We report the dispersed nanoplates prepared from bulk self-assembly of diblock copolymer poly(tert-butyl acrylate)-block-poly(2-cinnamoyloxyethyl methacrylate) (PtBA-b-PCEMA) with PCEMA as a UV-crosslinkable segment and PtBA as a hydrolysable segment. PtBA-b-P(HEMA-TMS) was synthesized through a two step ATRP and functionalized to PtBA-b-PCEMA. The diblock copolymer with 55.7 % weight ratio of PCEMA bulk was assembled into lamellar morphology and characterized by small-angle X-ray scattering (SAXS). After UV-crosslinking, the dispersed nanoplates were prepared by dispersing the crosslinked bulk self-assembly in a good solvent of the PtBA segment and characterized by transmission electron microscopy (TEM). The dispersed nanoplates have crosslinked PCEMA as the cores and the solubilized PtBA as the coronas. After hydrolysis of the PtBA segment into poly(acrylic acid) (PAA), the crosslinked nanoobjects could be dispersed in water and showed reversible pH-responsibility.  相似文献   

9.
Synthesis of Amphiphilic Diblock Copolymers by DPE Method   总被引:1,自引:0,他引:1  
Amphiphilic diblock copolymers, poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) and polystyrene-b-poly(acrylic acid) (PS-b-PAA), were prepared by 1,1-diphenylethene (DPE) method under mild conditions. Firstly, free radical polymerization of tert-butyl acrylate (tBA) was carried out with AIBN as initiator in the presence of DPE, giving a DPE-containing precursor, PtBA, with controlled molecular weight. Secondly, methyl methacrylate and styrene were polymerized in the presence of PtBA precursor, and PS-b-PtBA and PMMA-b-PtBA diblock copolymers with controlled molecular weights were obtained respectively. Finally, amphiphilic diblock copolymers, PMMA-b-PAA and PS-b-PAA, were prepared by hydrolysis of PS-b-PtBA and PMMA-b-PtBA. The formation of PS-b-PAA and PMMA-b-PAA was confirmed by 1H NMR. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to detect the self-assembly behavior of the amphiphilic diblock polymers in tetrahydrofuran (THF).  相似文献   

10.
Katrien V. Bernaerts 《Polymer》2005,46(19):8469-8482
A new set of block copolymers containing poly(methyl vinyl ether) (PMVE) on one hand and poly(tert-butyl acrylate), poly(acrylic acid), poly(methyl acrylate) or polystyrene on the other hand, have been prepared by the use of a novel dual initiator 2-bromo-(3,3-diethoxy-propyl)-2-methylpropanoate. The dual initiator has been applied in a sequential process to prepare well-defined block copolymers of poly(methyl vinyl ether) (PMVE) and hydrolizable poly(tert-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA) or polystyrene (PS) by living cationic polymerization and atom transfer radical polymerization (ATRP), respectively. In a first step, the Br and acetal end groups of the dual initiator have been used to generate well-defined homopolymers by ATRP (resulting in polymers with remaining acetal function) and living cationic polymerization (PMVE with pendant Br end group), respectively. In a second step, those acetal functionalized polymers and PMVE-Br homopolymers have been used as macroinitiators for the preparation of PMVE-containing block copolymers. After hydrolysis of the tert-butyl groups in the PMVE-b-ptBA block copolymer, PMVE-b-poly(acrylic acid) (PMVE-b-PAA) is obtained. Chain extension of the AB diblock copolymers by ATRP gives rise to ABC triblock copolymers. The polymers have been characterized by MALDI-TOF, GPC and 1H NMR.  相似文献   

11.
Huiqi Zhang  Xulin Jiang 《Polymer》2004,45(5):1455-1466
Hydroxyl end-capped telechelic polymers with poly(methyl methacrylate)-block-poly(n-butyl acrylate) (PMMA-b-PBA) backbones have been prepared via atom transfer radical polymerisation (ATRP) together with a nucleophilic substitution reaction. A hydroxyl-functionalised PMMA macroinitiator (HO-PMMA-Br) was prepared via ATRP at the optimised reaction temperature (60 °C) using 2-hydroxyethyl 2-bromoisobutyrate as the initiator. The high functionality of the bromo end group in the macroinitiator was confirmed by both 1H NMR technique and a chain-extension reaction. Electrospray ionisation mass spectrometer proved to be a valuable tool for characterising PMMAs with a bromo end group (PMMA-Br), which provided signals corresponding to the intact polymers although multiply charged polymer chains were observed. The well-defined block copolymers HO-PMMA-b-PBA-Br were obtained by the ATRP of n-butyl acrylate using HO-PMMA-Br as a macroinitiator in a one-pot reaction at 100 °C. The kinetics as well as the dependence of the Mn,SEC and PDIs of the obtained block copolymers on the conversions of n-butyl acrylate in the chain-extension reaction suggested negligible radical termination during the reaction, demonstrating that the well-defined HO-PMMA-b-PBA-Br with a high functionality of bromo end group were obtained. The nucleophilic substitution reaction of a monohydroxyl-functionalised block copolymer HO-PMMA-b-PBA-Br with 5-amino-1-pentanol in dimethyl sulfoxide at room temperature was verified with 1H and 13C NMR techniques, which resulted in a series of telechelic polymers HO-PMMA-b-PBA-OH with a functionality of hydroxyl groups up to 1.7 according to the gradient polymer elution chromatography.  相似文献   

12.
L. Krystin Breland 《Polymer》2008,49(5):1154-1163
Poly(isobutylene-b-styrene) (PIB-PS) copolymers and polyisobutylene (PIB) homopolymers were synthesized via quasiliving carbocationic polymerization from the initiator 3,3,5-trimethyl-5-chlorohexyl acetate, which contains a protected hydroxyl group. The PIB block was created at −70 °C in a methylcyclohexane/methyl chloride (60:40) cosolvent system, using TiCl4 as co-initiator, followed optionally by sequential addition of styrene. Using a strong base, the acetate head group of the resulting block copolymer was cleaved to yield a hydroxyl group, which was subsequently esterified with the branching agent 2,2-bis((2-bromo-2-methyl)propionatomethyl)propionyl chloride (BPPC) to create dual initiating sites for atom transfer radical polymerization (ATRP). ATRP of tert-butyl acrylate was carried out using a Cu(I)Br/1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) catalyst system. In some cases, the ester side chains of the poly(tert-butyl acrylate) (PtBA) blocks were cleaved to create poly(acrylic acid) (PAA) blocks. The final miktoarm star polymers had compositions that were very close to theoretical.  相似文献   

13.
The preparation of graphene/polymer composites by direct exfoliation of graphene from micro-sized graphite using a pyrene-functionalised amphiphilic block copolymer, poly(pyrenemethyl acrylate)-b-poly[(polyethylene glycol) acrylate] (polyPA-b-polyPEG-A), in either aqueous or organic media is presented. PolyPA-b-polyPEG-A was prepared using reversible addition fragmentation chain transfer (RAFT) polymerization of a pyrene-functionalised monomer to afford a homopolymer (polyPA), followed by copolymerization with PEG-A using polyPA as the macroRAFT agent. The composites were used to prepare sheets that exhibited increased tensile strength comparing to pure graphene and tunable conductivity. The composites were used to generate pure graphene sheets with a large size and increased conductivity comparing to those prepared by oxidation–reduction as shown by transmission electron microscopy and Raman spectroscopy.  相似文献   

14.
Amphiphilic ethyl cellulose (EC)-g-poly(acrylic acid) (PAA) copolymers were synthesized by atom transfer radical polymerization (ATRP). Firstly, ethyl cellulose macro-initiators with the degree of the 2-bromoisobutyryl substitution of 0.04 and 0.25 synthesized by the esterification of the hydroxyl groups remained in EC macromolecular chains and the 2-bromoisobutyryl bromides. Secondly, tert-butyl acrylate was polymerized by ATRP with the ethyl cellulose macro-initiator and EC-g-PtBA copolymers were prepared. Finally, the EC-g-PAA copolymers were prepared by hydrolyzing tert-butyl group of the EC-g-PtBA copolymers. The grafting copolymers were characterized by means of GPC, 1H NMR and FTIR spectroscopies. The molecular weight of graft copolymers increased during the polymerization and the polydispersity was low. A kinetic study showed that the polymerization was first-order. Meanwhile, EC-g-PAA copolymers were self-assembled to micelles or particles with diameters of 5 nm and 100 nm in water (pH = 10) when the concentration was 1.0 mg/ml.  相似文献   

15.
Poly(tert-butyl acrylate) (PtBA) was grafted to the surface of poly(ethylene-co-acrylic acid) (EAA) film and the pendant groups of the tethered PtBA were modified to create chemically tailored surface modifying layers. The carboxylic acid groups in the copolymer film served as the grafting sites for the covalent tethering of end-functionalized PtBA. The progression of these reactions was monitored using attenuated total reflectance (ATR)-FTIR and X-ray photoelectron (XPS) spectroscopies along with static contact angle measurements. By controlling the reaction conditions, the chemical functionality of the grafted layer ranged from tert-butyl ester (EAA-g-PtBA) to carboxylic acid (EAA-g-PAA) and was demonstrated by corresponding changes in wettability. The choice of PtBA as the tethered polymer allows for the subsequent substitution of the tert-butyl ester groups. To demonstrate, a novel procedure was used to replace the tert-butyl ester with N,N-dimethylethylenediamine (DMEDA) to form EAA-g-PDMEDA. These reaction schemes can be used to create tunable surface-grafted layers with various pendant group chemistries.  相似文献   

16.
This investigation reports the preparation and self-assembly behavior of polyhedral oligomeric silsesquioxane (POSS) containing poly(caprolactone)-graft-poly(acrylic acid) (POSS-PCL-graft-PAA) polymer. This article focuses on the self-assembly behavior of POSS tethered amphiphilic graft copolymer. In this investigation, POSS tethered alkyne functionalized polycaprolactone (PCL) was prepared by strategic ring opening polymerization (ROP) of ε-caprolactone and α-propargyl-ε-caprolactone using hydroxyl-terminated POSS as an initiator. Azide-terminated poly(tert-butyl acrylate) (P t BA) was grafted onto functional PCL via Cu-catalyzed azide-alkyne “click” (CuAAC) reaction. Finally, hydrolysis of the tert-butyl ester group into acid furnished the POSS tethered PCL-graft-PAA polymer. This amphiphilic graft copolymer was characterized by GPC, NMR, and FT-IR analyses and the morphology of the graft copolymer analyzed by HRTEM and FESEM analyses. On changing the graft copolymer concentration (low to high) in water, the morphology of the final graft copolymer changed from micelles to worm-like and core-shell. The structural motif of POSS plays an important role in this morphological transformation. The pH sensitivity was studied using DLS analysis as well as via release profile of rhodamine B as a model compound.  相似文献   

17.
Well-defined multiarm star copolymer poly(glycidol)-b-poly(styrene) (PGOH-b-PS) with an average number of PS arms per molecule of 85 has been prepared. The core first approach has been selected as the methodology using atom transfer radical polymerization (ATRP) of styrene to grow the arms from an activated hyperbranched poly(glycidol) as core. This activated hyperbranched macroinitiator was prepared by esterification of hyperbranched poly(glycidol) (PGOH) with 2-bromoisobutyryl bromide.PGOH-b-PS was used to modify diglycidylether of bisphenol A coatings cured by anionic ring-opening mechanism using 1-methyl imidazole as the initiator. The kinetics of the curing process, studied by dynamic scanning calorimetry (DSC), was not much affected when PGOH-b-PS was added to the formulation. By rheometry the effect of this new polymer topology on the complex viscosity (η*) of the reactive mixture was analyzed. The phase-separation of the modified coatings was proved by dynamic thermomechanical analysis (DMTA) and electronic microscopy (SEM and TEM) showing nano- or microphase separation as a function of the modifier content. The addition of this star polymer led to increase in the rigidity in terms of Young's modulus and in the microhardness in comparison to neat DGEBA.  相似文献   

18.
A fascinating nanoobject, diblock polymer brushes with a hard core of multiwalled carbon nanotubes (MWNTs) and a relatively soft shell of poly(methylmethacrylate)-block-polystyrene (PMMA-b-PS), was easily constructed by in situ reversible addition fragmentation chain transfer polymerization (RAFT) of methylmethacrylate followed by styrene (St) on the modified convex surfaces of MWNTs (MWNT-PMMA). The structure and morphology of the hybrid nanomaterials were characterized by FTIR, TEM, SEM, NMR, DSC and TGA. The results showed that both styrene and acrylate type monomers can be easily initiated and then propagated on the MWNT sidewalls via the in situ RAFT approach, and the length of the PS blocks increases with increasing St:MWNT-PMMA weight feed ratio.  相似文献   

19.
The versatile chloromethyl TIPNO-based alkoxyamine was efficiently transformed into other valuable functionalised TIPNO-based alkoxyamines such as amino alkoxyamines which are interesting initiators for block copolymers and bisalkoxyamines in good yield and in two steps at the most. One bisalkoxyamine has allowed to prepare well-defined polystyrene-b-poly(n-butyl acrylate)-b-polystyrene symmetrical triblock copolymer. The last representative example of such alkoxyamines is a styrenic alkoxyamine which was copolymerized with styrene to afford branched polystyrene. Finally, for the first time branched poly(n-butyl acrylate) by nitroxide mediated radical polymerization was obtained and was a efficient macroinitiator of styrene, which indicates that the radical polymerization mediated by this styrenic alkoxyamine is living.  相似文献   

20.
Different types of novel xanthates containing a vinyl ether moiety, S-benzyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate 1) and S-1-(ethoxycarbonyl)ethyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate 2) were synthesized. In particular, the Xanthate 2 enabled to design polyvinyl alcohol (PVA) stereoblock copolymer via the combination of living cationic vinyl polymerization and RAFT/MADIX polymerization. For cationic polymerization of isobutyl vinyl ether (IBVE) and tert-butyl vinyl ether (TBVE), the polymerizations were conducted under Xanthate 1-HCl adduct/SnCl4 and Xanthate 1 or 2-CF3COOH adduct/EtAlCl2 initiating system in the presence of ethyl acetate. Both systems proceeded in living polymerization fashion because the calculated Mn of both poly(IBVE) and poly(TBVE) matches with the Mn polymerized assuming that one polymer chain is formed per one molecule of the Xanthate 1 or 2. The resulting poly(TBVE) had a high number average α-end functionality as determined by MALDI-TOF-MS spectrometry. Xanthate 2 is more efficient for the following RAFT/MADIX polymerization of vinyl acetate (VAc). The RAFT/MADIX polymerization of vinyl acetate (VAc) using azobis(isobutyronitrile) (AIBN) at 60 °C was conducted using either poly(IBVE) or poly(TBVE) macro-CTA. The poly(TBVE) macro-CTAs synthesized from the Xanthate 2 were able to polymerize VAc smoothly via RAFT/MADIX polymerization, to prepare well-defined diblock copolymer, poly(TBVE)-b-poly(VAc). The resulting block copolymer was then hydrolyzed using KOH in methanol and followed by acid hydrolysis using HBr gas bubbling. The resulting polymer is inherently stereoblock like copolymer, isotactic rich PVA-b-atactic PVA (iPVA-b-aPVA). From the DSC measurement, the iPVA-b-aPVA has one glass transition at 69.5 °C and two melting points according to iPVA and aPVA at 237.9 and 198.1 °C, respectively. Thus, it can be suggested that the obtained PVA has two different geometries by the combination of living cationic polymerization and RAFT/MADIX polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号